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Introduction 
 

 

Over the past decade several landmark studies 

have advanced our scientific understanding of 

decision-making skill, its measurement, and its 

acquisition (i.e. Skilled Decision Theory). Here 

we present an integrative review of skilled human 

decision-making in experts and non- experts, 

with emphasis on four emerging insights. 

(1) Among non-experts, normatively superior 

decision-making is associated with a domain- 

general skill that has largely been neglected in 

research on general intelligence. (2) Statistical 

numeracy tests (i.e. assessments of practical prob- 

abilistic reasoning) tend to be the strongest single 

predictors of general decision-making skill across 

wide-ranging numeric and non-numeric judg- 

ments and decisions (www.RiskLiteracy.org). (3) 

The superior decision-making exhibited by experts 

and non-experts primarily reflects specialized 

knowledge and integrated long-term memory 

representations that inform adaptive heuristic stra- 

tegies (i.e. representative understanding rather 

than rational optimization). (4) High levels of 

basic cognitive abilities, such as fluid intelligence 

or attentional control, are not generally required 

for skilled or expert decision-making. 

Although we ve endeavored to minimize jargon 

in this chapter, some clarifications merit consid- 

eration. Historically, researchers have distin- 

guished between judgments (e.g. estimates) and 

decisions (e.g. choices), based on traditions from 

the 1940s (e.g. decision researchers followed 

conventions in economics and statistics, while 

judgment researchers followed conventions in 

perception). Here, and for general purposes, the 

terms judgment and decision-making are roughly 

synonymous (e.g. a decision is a judgment about 
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what to do; Baron, 2008). Thus, general decision- 

making skill refers to stable differences in judg- 

ment and decision-making quality exhibited 

across diverse and wide-ranging domains (e.g. 

health, wealth, and happiness). Likewise, verifi- 

able expert decision-making refers to stable differ- 

ences in judgment and decision-making quality 

exhibited within a specific domain (e.g. surgery, 

engineering, finance, chess). Following standard 

conventions, we use general intelligence as an 

umbrella term referring to a broad latent intelli- 

gence construct derived from interrelations among 

constituent basic cognitive abilities (e.g. fluid 

intelligence, crystallized intelligence, attentional 

control, memory, and others). We use skill to gen- 

erally refer to acquired types of knowledge, skills, 

abilities, and related capacities. Finally, bias fol- 

lows technical conventions referring to a tendency 

that does not necessarily imply error. Thus, biases 

may or may not be adaptive in various contexts 

(e.g. a look left bias when stepping into the 

street is much more adaptive in the United States 

than in the United Kingdom). 

Our review includes five sections. First, we 

present a summary of the connections between 

statistical numeracy, general decision-making 

skill, and normative decision standards. Second, 

we review mechanisms that give rise to verifiable 

expert decision-making and skilled decision- 

making in general (Skilled Decision Theory). 

Third, we review psychometric studies of basic 

cognitive abilities, discussing when and why 

numeracy tests out-predict fluid intelligence 

tests. Fourth, we discuss simple decision aids and 

training programs that causally (and often 

dramatically) improve risk comprehension and 

skilled decision making. Finally, we close with  a 

brief summary including ethical and policy 

implications. 

 
Numeracy and Decision-Making Skill 

 

practical efforts to improve risk communications 

and informed decision-making, particularly in 

health and medicine. Early work leveraged lessons 

from the National Assessment of Adult Literacy 

(Kutner, Greenberg, Jin, & Paulsen, 2006) and the 

Programme for International Student Assessment 

(Breakspear, 2012). A central focus was on the 

acquired skill numeracy, which refers to the 

array of mathematically related proficiencies 

that are evident  in  adults lives  . . .  including a 

connection to context, purpose, or use . . .  for 

active participation in the democratic process and 

..  . in the global economy (Ginsburg, Manly, & 

Schmitt, 2006). Accordingly, numeracy research 

is generally concerned with effective everyday 

problem-solving for activities like eval- uating 

medical treatment options, political claims, or 

financial products (Cokely, Galesic, Schulz, 

Ghazal, & Garcia-Retamero, 2012; Cokely, 

Ghazal, Galesic, Garcia-Retamero, & Schulz, 

2013; Cokely, Ghazal, & Garcia-Retamero, 2014; 

Newall, 2016; Reyna, Nelson, Han, & Dieckman, 

2009; Steen, 1990). Based on theoretical and his- 

torical connections (Huff, 1954; Paulos, 1988), 

behavioral decision research on the role of numer- 

acy began to rapidly advance following the intro- 

duction of a simple three-item psychometric 

numeracy test (Schwartz, Woloshin, Black, & 

Welch, 1997; see also Lipkus, Samsa, & Rimer, 

2001). The seminal contributions by Schwartz and 

colleagues showed that (1) well-educated indivi- 

duals often couldn t accurately answer basic 

numeracy questions (e.g. couldn t convert 1 in 

1000 to 0.1 percent) and (2) numeracy scores 

robustly predicted the accuracy of disease risk 

interpretations. As of 2016, hundreds of studies 

have used variants of these classical-type numer- 

acy tests to predict high-stakes real-world 

decisions. 

Over the past five years, brief adaptive and 

item-response instruments have set the standard 

   for numeracy assessment, including the most 
Since the 1990s, research on the role of mathema- 

tical skills in decision-making has grown from 

widely used modern tests validated for  use  

with diverse samples from industrialized 
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communities i.e. the Berlin Numeracy Tests 

(Cokely et al., 2012, 2014; see also Garcia- 

Retamero & Cokely, 2017; Weller et al., 2013). 

Initial analyses based on 21 studies, including 

data from 15 countries, found that the Berlin 

Numeracy Tests were the strongest single predic- 

tors of individual differences in general decision- 

making skill, including the ability to evaluate and 

understand risk (i.e. risk literacy) across numerical 

and non-numerical evaluations of consumer 

products, medical treatments, and natural hazard 

forecasts. The three-minute adaptive Berlin 

Numeracy Test more than doubled the predictive 

power of the best available alternative numeracy 

instruments, uniquely predicting decision quality 

independent of general cognitive abilities (e.g. 

cognitive reflection, working memory, fluid 

intelligence). More than 100,000 people from 

166 different countries have now taken one of the 

Berlin Numeracy Tests (adult skill sensitivity 

ranges from about the 10th to the 90th percentile 

in developed countries; see www.RiskLiteracy 

.org for tests and a test-version recommendation 

tool). Hundreds of subsequent studies with diverse 

participants from at least 60 countries including 

surgeons, lawyers, patients, children, scientists, 

military veterans, police officers, athletes, older 

adults, nationally representative samples, and 

others further document the unparalleled ability 

of statistical numeracy (i.e. practical probabilistic 

reasoning) to uniquely predict decision-making 

skill and risk literacy across (i) naturalistic, high- 

stakes, real-world choices (e.g. HIV prevention, 

cardiovascular risk mitigation, professional judg- 

ment of surgeons and physicians, public policy 

evaluations, natural hazard vulnerability, and 

many others) and (ii) theoretically essential para- 

digmatic tasks (e.g. risky prospect evaluation, 

framing resistance, sunk cost biases, recognizing 

norms, overconfidence, and others; Cokely et al., 

2014; Garcia-Retamero & Cokely, 2011, 2013, 

2014, 2017; Garcia-Retamero, Wicki, Cokely, & 

Hanson, 2014; Petrova, Kostopoulou, Delaney, 

Cokely, & Garcia-Retamero, 2017b). 

The causal mechanisms linking numeracy and 

decision-making skill are manifold, including 

metacognitive, heuristic, intuitive, affective, sub- 

jective, gist-based, and number-sense processes 

(Cokely & Kelley, 2009; Ghazal, Cokely, & 

Garcia-Retamero, 2014; Lindskog, Winman, 

Juslin, & Poom, 2013; Peters et al., 2006; Peters 

& Bjalkebring, 2015; Peters, Hibbard, Slovic, & 

Dieckmann, 2007; Reyna, 2004, 2008; Schley & 

Peters, 2014; Thompson, Turner, & Pennycook, 

2011; Traczyk & Fulawka, 2016). Accordingly, 

statistical numeracy is a robust predictor of 

numerical and non-numerical decisions, includ- 

ing judgments about social relationships, beha- 

vioral norms, professional competency, and many 

health behaviors (e.g. ignoring a heart attack).  In 

part, this broad predictive power follows because 

statistical numeracy tests are themselves 

representative judgment and decision-making 

tasks that challenge inductive reasoning and self-

regulation under conditions of risk and 

uncertainty. In other words, effective decision- 

making in our complex and uncertain world often 

requires the same kinds of reasoning and 

metacognitive skills that are used when solving 

various practical probabilistic math problems 

(e.g. evaluating thoughts, feelings, and  risks). To 

further clarify connections, including shared 

cognitive and logical elements, we next consider 

standards of rationality and normative decision- 

making. 

 
Rationality and Normative Standards 

Decision science broadly involves three main 

projects: descriptive (e.g. what decisions do peo- 

ple make and why), normative (e.g. what deci- 

sions should be made and why), and prescriptive 

(e.g. how can actual decisions be improved and 

why) (Baron, 2008). Modern notions of ration- 

ality typically refer to  coherence  standards  that 

may be used for the determination of norma- 

tively superior judgments and decisions. One of 

our most influential standards emerged in 1654 
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when Blaise Pascal began corresponding with 

Pierre de Fermat about the division of stakes in a 

popular gambling game. Although they were not 

the first to attempt to formalize chance, their 

letters became the founding documents of the 

logical system at the heart of modern science and 

decision theory i.e. probability theory 

(Hacking,  2006).   Exactly   300   years   later   a 

natural extension of inductive logic known as 

Bayesian probability theory enabled the axioma- 

tization of subjective expected utility theory i.e. 

the formal  normative  decision  theory  that  is  a 

basis of modern statistical and economic appli- 

cations, as presented in the book The Foundations 

of Statistics (Savage, 1954; see also Jaynes, 2003; 

Schlaifer & Raiffa, 1961; Von Neumann & 

Morgenstern, 1944). To clarify, logic can be fun- 

damentally divided into two major categories, 

namely (i) deductive logic sound reasoning 

from premises to conclusions that are certain 

and (ii) inductive logic sound reasoning from 

premises to inferences that involve risk (e.g. char- 

acterized by known probability distributions) or 

uncertainty (e.g. characterized by unknown 

probabilities or exposure) (Holland, Holyoak, 

Nisbett, & Thagard, 1986; Savage, 1954). 

Because we live in a fundamentally risky and 

uncertain world, the practical decision-relevance 

of deductive logic typically pales in comparison 

to that of inductive logic. 

Theoretically, the goal of all rational decision- 

making is to get more of what one should want 

(Baron, 1985, 2008; Hastie & Dawes, 2010). 

Should is complicated and requires many philo- 

sophical and value assumptions. Setting aside phi- 

losophical issues, good decisions can be defined 

by logical processes that coherently maximize 

desired outcomes in accord with integrative opti- 

mization techniques (e.g. determining the maxi- 

mum or minimum value of a function subject to 

constraints as in formal cost benefit or decision 

analysis). To illustrate, consider the example of 

deciding among several modest risky financial 

prospects such as lotteries involving two choices 

 

(e.g. (a) gain $100 for certain versus (b) 75 percent 

chance of gaining $200). Given enough choices 

like these and some other basic assumptions, on 

average a normatively superior decision would 

result when selecting options with the highest 

expected value i.e. multiplying the probability 

of an occurrence by its value (e.g. 75% * $200 = 

$150, which is more than $100, implying that    a 

risky choice should be favored). In more natur- 

alistic cases, whether evaluating a credit card offer 

or the personal advice of a friend, the logic is 

functionally the same. Rational, normatively 

superior decisions may be defined by optimization 

analyses that coherently integrate values, goals, 

preferences, and constraints in accord with stan- 

dards of logic, probability, and statistics (Baron, 

1985, 2008; Edwards, 1954; but see Gigerenzer, 

Todd, & the ABC Research Group, 1999). 

It is noteworthy how well most people s deci- 

sions approximate various normative standards, as 

if they actually solved an econometric or Bayesian 

statistical equation (Chater, Tenenbaum, & Yuille, 

2006). However, beyond shared conceptual ele- 

ments, optimization methods bear little resem- 

blance to actual human decision processes: most 

people do not compute statistical analyses in their 

head for the hundreds of decisions they make 

every day (e.g. selecting shoes or breakfast 

cereals, deciding who to talk with and what to 

discuss). In many naturalistic contexts decisions 

actually entail so much complexity and uncer- 

tainty that comprehensive optimization is impos- 

sible even for the most powerful computers. 

Because people have limited time, knowledge, 

and cognitive resources, alternative decision stra- 

tegies are required, leading people to rely on the 

simple heuristics that so often empower effective 

decision-making (e.g. satisficing, take-the-best, 

recognition, fluency; Gigerenzer et al., 1999; 

Klein, 1999; Simon, 1956, 1990). Taken together, 

the literature reviewed here indicates (a) that 

statistical numeracy robustly predicts general 

decision-making skill and (b) that skilled decision- 

making is fundamentally about reckoning with 

Jinhyo Cho
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risk and uncertainty. However, (c) the link 

between numeracy and superior decision-making 

cannot be explained by differences in the use of 

formal optimization methods because (d) most 

decisions are ill-structured, making them so com- 

plex that optimization is practically impossible. 

Thus, a central question remains: What are the 

causal mechanisms that give rise to normatively 

superior human decision-making? To address this 

question, we turn to research on skilled decision- 

making in experts and non-experts. 

 
Expert and Skilled Decision-Making 

science reviews see Ericsson, 1991; Ericsson, 

Charness, Hoffman, & Feltovich, 2006; Ericsson, 

Prietula, & Cokely, 2007; and this volume). 

 

Expert Performance 

The term expert colloquially refers to trained 

professionals with experience or credentials (e.g. 

a qualified expert). In contrast, expert 

performance is a scientific term referring to the 

verifiable, reproducible, and superior human per- 

formance that can be exhibited (and studied) in 

representative and naturalistic tasks. The magni- 

   tude of the superiority exhibited by expert 

Human cognition, including analytical and emo- 

tional processing, is often characterized with 

respect to the interplay of intuition and delibera- 

tion (e.g. automatic versus controlled, fast versus 

slow thinking, hot and emotional versus cold and 

calculating, dual-system, dual-types, and many 

others; Evans & Frankish, 2009; Kahneman, 

2003, 2011; Stanovich & West, 2000; Shiffrin & 

Schneider, 1977; but also see Arkes, 2016; 

Cokely, 2009; Moshman, 2000; Osman, 2004). 

Common assumptions suggest that superior 

decision-making may generally require outstand- 

ing cognitive abilities that enable the inhibition of 

emotions and intuitions, while empowering com- 

plex and abstract logical reasoning. This perspec- 

tive offers something like a Mr. Spock depiction 

of the pinnacle of skilled human decision-making 

(i.e. the extremely logical and emotionless 

science-fiction superintellect). Clearly, some 

professionals do routinely perform technical or 

formal decision analyses for high-stakes decision- 

making (e.g. operations research). Computerized 

decision support technologies are also increasingly 

used to inform diverse decisions (e.g. forecasting, 

medical decision-making). However, beyond 

these few examples, research reveals a very differ- 

ent picture of the underlying cognitive dynamics 

involved in skilled decision-making, as exten- 

sively documented in the  scientific  literature  on 

human expert performance (for state-of-the- 

performers tends to be remarkable (e.g. 3 to 

1000+ standard deviations better as compared to 

novices). For example, many chess grand masters 

can simultaneously play hundreds of games, 

readily beating nearly all their highly skilled and 

motivated competitors (e.g. the world record 

involved 604 simultaneous matches with only   8 

losses). Research on these kinds of remarkable 

abilities, based on the expert performance 

approach, has revealed a great deal about the 

mechanisms that mediate and govern verifiable 

expertise. For example, no one ever becomes an 

expert in an established domain of expert perfor- 

mance without first deliberately practicing for 

thousands of hours over many years (Ericsson, 

Krampe, & Tesch-Römer, 1993; Ericsson, 

Prietula, & Cokely, 2007). Deliberate practice 

specifically refers to specialized, high concentra- 

tion training efforts, often completed in solitude. 

These efforts are intentionally designed  to move 

the expert past their current performance level 

through elicitation of specific feedback about 

performance weaknesses and strengths. 

Accordingly, deliberate practice tends to be quite 

challenging and cannot be routinely sus- tained 

for great periods of time (e.g. perhaps four to five 

hours per day on average). Unlike playing golf for 

fun with friends, one might delib- erately practice 

by  independently  working  on a very specific 

kind of bunker shot under 



C:/ITOOLS/WMS/CUP-NEW/12146969/WORKINGFOLDER/ESSON/9781107137554C26.3D 481 [476–505] 26.12.2017 8:21PM 

 

 

Decision-Making Skill 481 

 

controlled conditions. In time, careful and con- 

sistent deliberate practice efforts tend to produce 

remarkable differences in knowledge, skills, and 

abilities. 

 

Expert Decision-Making 

Studies of chess expertise efficiently illustrate the 

cognitive mechanisms that support human expert 

decision-making more generally (for a review see 

Gobet & Charness, Chapter 31, this volume). 

Decision research in chess is facilitated because 

the rules are well specified and the goals are 

unambiguous. The game has a long tradition with 

formal scoring conventions that index spe- cific 

ratings for a huge number of past and present 

players. Chess is also computationally complex: 

there is currently no known solution or optimal 

strategy that can ensure a victory regardless of an 

opponent s move. Thus, consistently superior 

decision-making in chess involves heuristic 

deliberation and logical inductive reasoning 

under risk and uncertainty, in accord with formal 

foundations of normative decision and rational 

choice theories. As such, chess computer pro- 

grams attempt to approximate an optimal solution 

by searching hundreds of millions of positions 

per second using heuristics to estimate the relative 

expected values of candidate moves. In contrast, 

extended search and formal computation play an 

exceedingly small role among human experts. 

Instead of selecting moves based on massive itera- 

tive search processes, verifiable experts rely on 

their vast and integrated stores of specialized 

knowledge in long-term memory, facilitating 

rapid encoding of goal-relevant features in tandem 

with sophisticated and nuanced pattern recogni- 

tion. This integrated understanding allows experts 

to quickly narrow their search and evaluation so 

they can deliberatively evaluate a small number 

of outstanding candidate options (e.g. typically 

around four per minute). 

The comparison of chess experts to less skilled 

chess players reveals several notable skill 

 

differences. Experts can extract useful patterns 

and relations from information faster and in par- 

allel, while less skilled individuals rely on slower 

serial encoding and search. In naturalistic non- 

routine situations experts tend to deliberate more 

during move selection compared to less skilled 

individuals, and this difference tends to benefit 

their performance (Moxley, Ericsson, Charness, 

& Krampe, 2012). Most importantly, experts con- 

sider qualitatively different moves than those 

considered by less skilled individuals. This 

reflects substantial differences in their fundamen- 

tal understanding and knowledge of game situa- 

tions: expert decision-makers have access to 

more and more sophisticated chunks in long- 

term memory (e.g. have memorized more than 

100,000 moves and sequences). Ultimately, 

experts rely on larger intricately structured 

knowledge databases in memory to support and 

evaluate a small number of complex inductive 

mental simulations. Taken together, these find- 

ings highlight the power and primacy of knowl- 

edge and sophisticated understanding over formal 

computation in verifiable expert decision-making 

(e.g. Ericsson et al., 2006; Klein, 1999). 

 

General Decision-Making Skill 

Given that even experts don t make decisions by 

trying to imitate formal mathematical optimiza- 

tion methods, perhaps it is not surprising that 

skilled, non-expert decision-makers also typi- 

cally forgo formal calculation across wide- 

ranging everyday decision contexts. This pattern 

is well illustrated in the first cognitive process 

tracing study to directly map the links between 

decision strategies, cognitive abilities, and super- 

ior decision-making under risk (Cokely & Kelley, 

2009). Using choice outcome modeling, together 

with decision reaction time and retrospective 

verbal protocol analysis (Ericsson & Simon, 

1980, 1993; Fox, Ericsson, & Best, 2011), the 

study mapped the strategies that individuals with 

higher cognitive ability scores (i.e. working 
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memory, numeracy, and cognitive reflection) 

used to make superior decisions when tasked 

with paradigmatic risky prospect evaluation. 

Analyses revealed that only a very small propor- 

tion of people attempted to explicitly calculate 

expected values (i.e. < 5 percent explicitly multi- 

plied probabilities by values). Instead, the vast 

majority of superior decision-making was found 

to be linked to personally relevant, affectively 

charged heuristic-based evaluation. Structural 

modeling further revealed that all general ability- 

to-performance relations were fully mediated  by 

large differences in affective and elaborative 

long-term memory encoding and metacognitive 

reasoning (i.e. evaluating relations between feel- 

ings, thoughts, and consequences in personally 

relevant concrete mental simulations and 

narratives). 

Results from Cokely and Kelley (2009) 

suggested that even during ultra-simplified para- 

digmatic risky prospect evaluation, general 

decision-making skill tends to reflect differences 

in how and how much people think about, and 

meaningfully understand, a decision problem (see 

also Ghazal et al., 2014; Jasper, Bhattacharya, & 

Corser, 2017; Pachur & Galesic, 2013; Peters, 

2012, 2017; Reyna et al., 2009). Rather than 

calculating expected outcomes, most skilled 

decision-makers spent more time imagining how 

changes in wealth would affect their lives and how 

those changes might feel via informal narratives 

(e.g. well that s probably never going to happen 

but if it did how could I forgive myself ). Indeed, 

some of the least cognitively able individuals 

were among the most skilled decision-makers, 

reflecting their more extensive, personally mean- 

ingful deliberation. This sort of active, careful, and 

open-minded exploration accords with theories of 

successful decision-making as detailed in Baron s 

touchstone work Rationality and Intelligence 

(1985). Today many related studies have been 

conducted in our labs and others, including one 

study with more than 50,000 participants from 46 

different countries (Rubinstein, 2013). Additional 

converging process tracing evidence comes from 

protocol analyses, eye-tracking, reaction time 

analyses, choice modeling, memory analyses, 

and causal experimentation (Garcia-Retamero & 

Cokely, 2013, 2014, 2017; Garcia-Retamero, 

Cokely, Wicki, & Joeris, 2016b; Ghazal et al., 

2014; Okan, Garcia-Retamero, Cokely, & 

Maldonado, 2015; Woller-Carter, Okan, Cokely, 

& Garcia-Retamero, 2012). Taken together, results 

suggest that general decision-making skill often 

involves and can be predicted by both quantitative 

and qualitative differences in heuristic-based 

deliberation and representative understanding in 

long-term memory. These findings contribute to 

an integrative theoretical account of skilled 

human decision-making. 

 

Skilled Decision Theory 

Skilled Decision Theory explains the essential 

causal mechanisms that enable skilled decision- 

making in experts and non-experts with reference 

to the pivotal roles of heuristic deliberation and 

representative understanding. Skilled Decision 

Theory is grounded in Skilled Memory Theory 

(Ericsson, Chase, & Faloon, 1980), extending our 

understanding of expert decision-making in 

accord with frameworks for rational thinking 

(Baron, 1985, 2008) and adaptive heuristic deci- 

sion-making (Gigerenzer et al., 1999). The causal 

mechanisms that support general decision- 

making skill are similar to those that support 

complex situation model development in skilled 

reading comprehension (i.e. an acquired domain- 

general skill) and high-fidelity situation aware- 

ness in expert decision-making (i.e. an acquired 

domain-specific expertise). Because most adults 

have a vast expert-like knowledge of themselves 

(e.g. experiences, values, habits, goals, desires, 

and preferences) personally meaningful heuristic 

deliberation facilitates rapid detection and 

detailed encoding of relevant information in dur- 

able, integrated long-term memory representa- 

tions (e.g. mental models, situation narratives, 
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and inductive simulations; Holland et al., 1986). 

By utilizing extensive and thoroughly integrated 

pre-existing knowledge structures, non-expert 

decision-makers functionally circumvent atten- 

tional capacity limitations of short-term (work- 

ing) memory that could otherwise constrain the 

complexity and precision of their understanding 

and reasoning, thereby leveraging the same kinds 

of long-term working memory capacities that 

support expert performance more generally 

(Ericsson & Kinstch, 1995). 

Despite substantial benefits, personally 

oriented heuristic deliberation can increase the 

likelihood of potentially counterproductive pro- 

cesses (e.g. confirmation bias, anchoring, attribute 

substitution, biased sampling, small sample over- 

generalization, affective overshadowing, over- 

weighting priors, and others). In part, this is why 

statistical numeracy and associated metacognitive 

skills are essential components of general deci- 

sion-making skill. Decision-makers who are 

skilled in practical inductive reasoning (e.g. sta- 

tistically numerate and metacognitively savvy), 

and who also engage in elaborative heuristic 

deliberation, are well prepared to correct or cir- 

cumvent potentially costly mistakes via metacog- 

nitive heuristics (e.g. disconfirming, reframing, 

resampling, double checking, base rate condition- 

ing, affect recalibrating, and coherence checking; 

Cokely et al., 2012; Ghazal et al., 2014; see also 

Baron, 1985, 2008). Thus, ordinary people are 

able to generate a detailed, relatively coherent, 

 

adaptive heuristic strategies such that decisions 

can approximate normative standards without 

any formal optimization analyses (e.g. ecologi- 

cally rational representation of cue validities, cue 

orderings, and other factors that calibrate fast and 

frugal heuristic use; Gigerenzer, 2015; Gigerenzer 

& Goldstein, 1996). In these and other ways, 

essential skills promote resilient and adaptive 

decision-making under conditions of complex 

risk and uncertainty, without requiring or guaran- 

teeing neo-classical rationality. 

In summary, among typical adults, including 

non-experts and experts alike, Skilled Decision 

Theory holds that superior decision-making is pri- 

marily driven by (i) skilled and personally relevant 

heuristic deliberation and (ii) sophisticated, affec- 

tively charged representative understanding that 

(iii) interacts with and informs adaptive heuristic 

use (Cokely et al., 2012; Cokely, Schooler, & 

Gigerenzer, 2009; Garcia-Retamero & Cokely, 

2017; Gigerenzer & Gaissmaier, 2011; Keller, 

Cokely, Katsikopoulos, & Wegwarth, 2010). 

Taken altogether, the observed primary roles of 

acquired knowledge and heuristic deliberation 

sharply contrast with longstanding assumptions 

about the importance of abstract deductive logical 

reasoning capacities. To help resolve this apparent 

inconsistency, we next review recent and major 

psychometric studies of general cognitive abilities. 

 
General Intelligence and 
Decision-Making Skill 

and representative understanding of the decision    
problem allowing them to intuitively yet precisely 

feel the weight and potential consequences of 

various options and outcomes (Peters, 2012; 

Petrova, Garcia-Retamero, & Cokely, 2015; 

Petrova, van der Pligt, & Garcia-Retamero, 2014; 

Petrova et al., 2017a; Traczyk & Fulawka, 2016;  

but  also  see  Fuzzy-Trace  Theory  for   a 

perspective emphasizing benefits of imprecise, 

automatic aspects of comprehension; Reyna, 

2004, 2008; Reyna & Brainerd, 1995). In turn, 

this understanding informs the selection of 

In 1994 a controversial book was published 

entitled The Bell Curve: Intelligence and Class 

Structure in American Life (Herrnstein & Murray,  

1994).  This  book  was  presented  as  a crowning 

synthesis of more than a century of research and 

theory on individual differences in intelligence. 

The book also included a new major study of links 

between general intelligence and life outcomes, 

suggesting wide-ranging potential implications, 

broadly arguing that: (a) general intelligence was 

one of the most influential causes 
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of economic and social prosperity in the United 

States (and probably elsewhere) and (b) intelli- 

gence was largely but not entirely determined by 

genetic factors (e.g. roughly stable with firm 

upper-bounding individual limits). Ultimately, the 

book detailed a common perspective suggesting 

that the primary reason intelligence predicts life 

outcomes is because  intelligence  tends  to  be  a 

strong determinant of decision-making quality. 

According to this view, only a small number of 

people have the rare intellectual aptitudes that are 

required for consistently good decision-making 

( cognitive elite ), given the increasing social 

and technological complexities of our industria- 

lized world. Indeed, a huge and orderly body of 

data documents a robust, albeit often modest, link 

between general intelligence and life outcomes 

including educational attainment, wealth, occupa- 

tional achievement, professional advancement, 

health, and others. However, other claims remain 

largely unsubstantiated, including (a) the causal 

assumptions about the underlying mechanisms 

that allow general intelligence to predict life out- 

comes (e.g. fixed intellectual capacities), (b) the 

extrapolations about perceived intellectual trends 

(e.g. the emergence and dominance of a ruling 

class of cognitive elite), and (c) the appropriate 

policy prescriptions (e.g. social, educational, and 

economic segregation). 

Although links between intelligence and out- 

comes have been well established for nearly a 

century, until recently direct evidence on the con- 

nections between basic cognitive abilities, decision- 

making, and life outcomes has been extremely 

limited. Consider what is regarded as the most com- 

prehensive integrative analysis of the structure of 

general cognitive abilities and intelligence to date, 

namely the book entitled Human Cognitive Abilities 

: A Survey of Factor-Analytic Studies by John 

Carroll (1993). This monumental monograph 

presents a reanalysis of 460 factor-analytic cogni- 

tive ability studies collected over a 60-year period. 

Across all included datasets and tasks decision- 

making was rarely mentioned, except in the context 

of very simple perceptual reaction-speed tasks. 

However, tests of reasoning abilities received exten- 

sive attention and featured prominently in Carroll s 

estimates of the fluid intelligence factor, which was 

determined to be the strongest single factor explain- 

ing overall general intelligence (Figure 26.1). 

 
 

 
 

Figure 26.1 The total variance explained in overall general decision-making skill 

by each variable modeled as a single, sole predictor. 
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Based on analyses of 176 large datasets includ- 

ing some 236 different reasoning factors Carroll 

(1993) suggested that three essential reasoning 

factors best explained fluid intelligence, namely 

(1) sequential reasoning, (2) inductive factors, 

and (3) quantitative reasoning. Careful inspection 

reveals that paradigmatic decision-making skills 

were nevertheless broadly neglected. In contrast 

to common assumptions, the category labeled 

inductive factors does not broadly represent 

inductive logic. The half-dozen or so inductive 

tasks instead primarily require narrow types of 

inferences used during abstract deductive reason- 

ing. Specifically, within deductive mathematical 

reasoning there is a class of inductive inference

that is relatively independent of risk or uncer- 

tainty. In psychological research these kinds of 

deductive reasoning tasks including progressive 

matrices, analogical reasoning, and categoriza- 

tion-type problem-solving are more specifically 

referred to as rule induction tasks (Goldman & 

Pellegrino, 1984; Holyoak & Morrison, 2005). 

Across all these types of tasks, if a person can 

figure out the rule that precisely dictates the rela- 

tions among various elements, they can always 

deduce the final answer with absolute certainty. 

To be clear, there is surely some psychological 

uncertainty involved in the completion of deduc- 

tive rule-induction tasks (e.g. matrix reasoning), 

such as deciding when you should be confident 

you have determined the correct rule before 

deducing a final answer. However, these tasks 

are otherwise not indices of the full range of 

inductive logic that is characteristic of modern 

paradigmatic or naturalistic decision-making. 

Moreover, the quantitative reasoning tasks 

used to measure fluid intelligence also typically 

failed to assess the full range of relevant skills, 

focusing primarily on conventional mathematical 

components that require an appreciation of the 

quantitative concepts and relations, particularly 

as treated in mathematics in its various branches, 

from simple arithmetic to algebra, geometry, and 

calculus (Carroll, 1993, p. 213). As a result of 

 

this narrow task-sampling, most major factor- 

analytic intelligence studies conducted in the 

twentieth century fail to incorporate a wide range 

of logical inductive, probabilistic, or statis- tical 

reasoning skills in their analyses. 

Historical coincidence partially explains why 

decision science perspectives have been neglected 

in psychometric intelligence research. Behavioral 

decision science is a relatively young field that 

began to have a mainstream presence in psychol- 

ogy and economics about 25 years after the cog- 

nitive revolution of the 1950s. Statistical theory 

and training is also a relatively modern invention 

as the axiomatic (objective) formalization of 

probability theory was not published until 1933, 

about two years before Ronald  Fisher  inspired a 

scientific revolution with The Design of 

Experiments. And still today highly trained and 

well-respected scientists often misunderstand 

and misapply statistical theory (Lindsay, 2015). 

Moreover, even conventional quantitative skills 

have historically been treated inconsistently in 

the intelligence literature. For example, 

Herrnstein and Murray (1994) excluded a brief 

(five minute) timed test of mathematical opera- 

tions from their final analysis because it was not 

sufficiently correlated with their intelligence esti- 

mate (i.e. the data were available but excluded due 

to low factor loadings). Reanalyses of their data 

found that the excluded timed math operations test 

actually predicted wages as well as the part of the 

Armed Forces Qualifications Test data that 

Herrnstein and Murray used (Heckman, 1995). If 

indeed this very brief test of math ability was 

relatively independent of general intelligence,

yet still predicted wages as well as the unrelated 

estimates of general intelligence, it follows that 

numerical abilities must explain important life 

outcomes that are otherwise missed by more stan- 

dard general intelligence metrics. To evaluate the 

relative influence of intelligence and other cogni- 

tive abilities on general decision-making skill, we 

next consider several recent landmark psycho- 

metric decision science studies. 
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Psychometric Studies of 
Decision-Making Skill 

At the turn of this century, Stanovich and West 

(2000) published a highly influential paper entitled 

Advancing the Rationality Debate. Their work 

reviewed individual differences in decision- 

making, examining the link between general cog- 

nitive abilities and susceptibility to common 

heuristics and biases in the Kahneman and 

Tversky tradition (Stanovich, 1999). Based on 

analyses of correlations, Stanovich and West 

showed that intelligence predicted normatively 

superior decision-making in young adult partici- 

pants, suggesting (1) a positive manifold among 

many judgment and decision-making abilities, and 

(2) a robust correlation with general intelligence 

as measured by standardized college achievement 

or matrix reasoning tests (i.e. deductive rule- 

induction tasks). Although their theoretical 

account of these findings has changed in funda- 

mental ways over the last 15 years (Stanovich, 

2016; Stanovich, West, & Toplak, 2016), the 

groundbreaking work of Stanovich, West, and 

others paved the way for more comprehensive 

psychometric decision science investigations (see 

also the seminal contributions of Frederick, 2005; 

Peters et al., 2006). 

Decision Competency Assessment. Historically, 

research has emphasized four core decision skill 

components known to shape decision consistency 

and accuracy, namely (1) assessing beliefs, (2) 

assessing values, (3) integrating beliefs and 

values, and (4) having a metacognitive under- 

standing of one s abilities, resources, and con- 

straints (Edwards, 1954; Raiffa, 1968; Yates, 

1990). Leveraging this reasoning, in 2005 the 

first in a series of two landmark studies presented 

what was then the most comprehensive assess- 

ment of plausible real-world  correlates  of good 

decision making . . .  [that broadly] span the 

domain of decision-making skills (Parker & 

Fischhoff, 2005, p. 1). Specifically, the study 

assessed and modeled general decision 

performance and ability structure across seven 

paradigmatic decision domains, namely, (1) risk 

perception consistency, (2) social norm recogni- 

tion, (3) resistance to sunk costs, (4) resistance to 

framing, (5) applying decision rules, (6), choice 

path independence/consistency, and (7) confi- 

dence calibration (e.g. over-/under-confidence). 

Integrating the patchwork of individual differ- 

ence assessments used in the past, Parker and 

Fischoff created a broad Young Decision Making 

Competency assessment (Y-DMC) and adminis- 

tered it to 110 diverse young adults. 

Parker and Fischhoff s (2005) study revealed 

an anticipated positive manifold among paradig- 

matic decision tasks, which was well explained 

by a one-factor model. Analyses showed that the 

Y-DMC was related to other cognitive ability 

tests (e.g. vocabulary and executive control). 

Importantly, each of the seven facets also pre- 

dicted various behavioral outcomes, decision 

styles, or risk factors ranging from sustaining 

social support and positive peer interaction, to 

delinquency, drug use, and other vulnerabilities. 

These relations remained significant and largely 

unchanged after statistically controlling for gen- 

eral cognitive abilities. Results further indicated 

that decision-making skill largely or entirely 

mediated the link between general cognitive abil- 

ities and important life outcomes such as beha- 

vioral coping, externalizing behaviors, and 

overall at-risk status. 

Two years after the initial validation, a second 

landmark study in this series was published by 

Bruine de Bruin, Parker, and Fischhoff (2007). 

The research included an updated, advanced 

competence assessment designed for use with 

diverse adults from industrialized countries (i.e. 

the A-DMC; Table 26.1). The extensive decision- 

making assessment was completed at home by 

360 participants. Once again, a one-factor model 

provided an efficient fit, although a two-factor 

model improved model fit (e.g. from 30 percent 

to 46 percent explained variance). Predictive 

validity was demonstrated using a Decision 
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Table 26.1 Components of the Adult Decision-Making Competence (A-DMC) assessment (Bruine de Bruin 

et al., 2007). 

A-DMC 

component Description    Example item 
Consistency in 

Risk 

Perception 

 
Recognizing 

Social Norms 

 

 

 
Resistance to 

Sunk Costs 

 

 

 
Resistance to 

Framing 

 

 

 

 

 

 

 

 

 
Applying 

Decision Rules 

 

 

 
Path 

Independence 

 

 

 

 
 

Under-/over- 

confidence 

This task asks participants to judge 

the probability of various 

events happening in two 

different time frames. 

This test measures how well 

participants judge social norms. 

Participants assess 16 

undesirable behaviors. 

 
This test measures the ability to 

ignore prior financial and time 

investments that are no longer 

paying off when making 

decisions. 

This task measures whether 

value judgments are affected 

by irrelevant variations in how 

the problem is presented. 

 

 

 

 

 

 

 
This task evaluates the ability to 

apply decision rules, by asking 

participants to choose 

between DVD players with 

different ratings and features. 

This test presents item pairs 

posing normatively equivalent 

choices between gambles. 

The participants choice should 

not be affected by normatively 

irrelevant changes. 

This test measures how well 

participants can assess their own 

knowledge. Participants first 

answer a true/false question, 

then assess their confidence in 

that answer.What is the 

probability that someone will steal something 

from you during the next year/in the next 5 

years? 

 
First set: It is sometimes OK to steal under 

certain circumstances.
Second set: Out of 100 people your age, how 

many would say it is sometimes OK to steal 
under certain circumstances.

After a large meal at a restaurant, you order a 
big dessert with chocolate and ice cream. 
After a few bites you find you are full and you 
would rather not eat any more of it. Would you 
be more likely to eat more or to stop eating 
it? 

 
Recent evidence has shown that a pesticide is 

threatening the lives of 1,200 animals. Two 

response options have been suggested. 

Which option do you recommend: 

(1) Option A: 600 animals will be lost for sure. 

(2) Option B: 75% chance 400 animals will be 

lost, and 25% chance that 1,200 animals will 

be lost. 

The same item is then presented in a gain

format (e.g. 600 animals are saved for sure). 

Lisa wants the DVD player with the highest 

average rating across features. Which one of 

the presented DVD players would Lisa prefer? 

 

 
Which do you like best: 

(1) Flip a coin. If heads, win $100. If tails, win $0. 

(2) Sure Win. Win $50 for sure. 

Also presented in different forms. Performance 

measured by participant s consistency in 

choices. 

True or false: Stress makes it easier to form 

bad habits. 

How confident are you? 

50% (just guessing) to 100% (absolutely sure). 
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Outcomes Inventory (DOI), a robust self-report 

general weighted index of maladaptive real- 

world decision outcomes (e.g. being fined, over- 

spending). General intelligence was also directly 

assessed using the Raven s advanced progressive 

matrix reasoning test (fluid intelligence) and the 

Nelson-Denny reading test of verbal ability (crys- 

tallized intelligence). 

The results of Bruine de Bruin et al. (2007) 

revealed strong relations between intelligence 

and general decision-making skill (i.e. correlations 

around 0.6). However, predictive validity model- 

ing showed the composite A-DMC decision 

quality score predicted decision outcomes about 

four times better than intelligence scores alone. 

Decision-making skill as assessed by A-DMC 

also explained about 75 percent of the link 

between intelligence and decision outcomes, as 

measured by the DOI. This finding suggests that 

a primary reason intelligence predicts better deci- 

sion outcomes is because more intelligent people 

tend to acquire higher levels of decision-making 

skill. Nevertheless, estimated decision-making 

skill scores predicted decision outcomes much 

better than, and largely independently of, intelli- 

gence (i.e. 80 percent of decision-making skill s 

predictive power was independent of intelligence). 

Taken together, these landmark studies suggest 

that while standard intelligence tests predict real- 

world decision-making outcomes, they tend to be 

much less powerful compared to more direct mea- 

sures of general decision-making skill. Results 

further confirm that paradigmatic decision- 

making competency provides a robust estimate of 

real-world decision-making skill, predicting high- 

stakes decision outcomes far better than, and lar- 

gely independent of, general intelligence (Bruine 

de Bruin et al., 2007; Del Missier, Mäntylä, & 

Bruin, 2012; Parker & Fischhoff, 2005). 

Intelligence, Decisions, and Numeracy 

Components The work of Parker and Fischhoff 

(2005) and Bruine de Bruin et al. (2007) provided a 

robust and representative benchmark assessment of 

paradigmatic decision-making skills including (but 

not limited to) tasks in the heuristics and biases 

tradition (Kahneman, 2011; Tversky & Kahneman, 

1985). However, until recently, broader efficient 

research assessments covering the full range of 

quantitative numeracy skills have not been widely 

available. To address this gap we turn to a 

comprehensive adult numeracy framework 

(Ginsburg et al., 2006) derived following a 

systematic review of 29 existing mathematical and 

numeracy frameworks and related national 

education standards. This framework indicates that 

the modern core collection of essential 

components of adult numeracy in industrialized 

societies typically involves: operations including 

computation, estimation, rates, ratios, proportions, 

and percentages; probability including collection, 

organization, and display of data, analysis and 

interpretation of data, chance and probability, and 

inferential reasoning; geometry including 

measurement units, trigonometric ratios, angles 

and lines, shapes, perimeter, area, and volume, 

length, width, height, and radius; and algebra 

including algebraic expressions, symbols, 

equations, and functions. Building on this and 

related statistical literacy frameworks (Gal, 2003; 

Ginsburg et al., 2006; Kutner et al., 2006), we 

developed the Berlin Numeracy Components Tests 

(BNT-C), using a multiphase iterative test 

development process, in order to provide 

simultaneous estimates of: 

 
1. Full-scale adult numeracy. 

2. Adult numeracy subscales (i.e. operations, 

probability, algebra, geometry). 

3. Statistical numeracy (i.e. a composite of 

operations and probabilities). 

4. Conventional numeracy (i.e. a composite of 

algebra and geometry). 

Several two-parameter logistic models were 

estimated using Item Response Theory in order 

to identify a final pool of (up to) 36 items for 

efficient assessment across various samples and 

Jinhyo Cho

Jinhyo Cho

Jinhyo Cho
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subsamples of diverse people in industrialized 

countries (e.g. all test/sub-test information func- 

tions peaked around theta of zero; Cokely, Allan, 

Ghazal, Feltz, & Garcia-Retamero, forthcoming; 

Ghazal, 2014). As with previous tests, different 

formats allowed items to be presented in adaptive 

or traditional modes (e.g. paper and pencil), as 

needed for various study constraints (e.g. brief 

online versus extensive in-person testing). 

Thanks in part to essential funding from the 

National Science Foundation and others, we then 

endeavored to conduct the most comprehensive 

and representative series of studies of general deci- 

sion-making skill in history, while simultaneously 

updating national and international norms for 

numeracy, risk literacy, and decision-making skill 

(Cokely et al., forthcoming; but for similar exten- 

sive and ambitious ongoing approaches that have 

also revealed strong and robust influences of 

numeracy see Stanovich et al., 2016). 

In one of our first broad studies, we included 

hundreds of paradigmatic and ecologically 

sampled decision-making tasks (see Table 26.2), 

including (a) the Adult Decision-Making 

Competence assessment (A-DMC), (b) a paradig- 

matic prospect evaluation assessment battery 

(e.g. risky lotteries, intertemporal choice), (c) a 

class inclusion illusion task battery (e.g. denomi- 

nator neglect, ratio bias), and (d) an ecological 

risk literacy test battery made up of real-world 

decision and evaluation tasks sampled from 

representative health, financial, natural hazard, 

civic, and consumer contexts (e.g. evaluating real 

advertising and political polls, interpreting 

relevant medical risks, offering actual recommen- 

dation to peers about HIV, relationships, finances, 

etc.). One hundred and twenty-six young adults 

completed all phases of the assessment including 

all decision-making tasks, the newly developed 

Berlin Numeracy Components Test (BNT-C), 

seven other leading numeracy tests, the Raven s 

advanced progressive matrices for assessment of 

fluid intelligence, the assessment of cognitive 

impulsivity developed by Frederick (2005), as 

 

well as about two dozen other personality, trait, 

style, ability, demographic, and outcome 

assessments. 

Upon completion of the study we derived an 

overall general decision-making skill estimate 

based on a weighted cumulative index of superior 

decision-making performance (e.g. weighted by 

relative factor loadings). As measured with the 

Berlin Numeracy Components Test alone, full 

scale numeracy accounted for 34 percent of the 

total variance in overall decision-making skill. In 

comparison, the best combination of all other 

cognitive ability and numeracy instruments 

accounted for roughly 30 percent of overall deci- 

sion-making skill, as depicted in Figure 26.2. 

Despite taking more than ten times longer to 

complete, all other cognitive ability tests com- 

bined provided significantly less predictive 

power compared to the single brief Berlin 

Numeracy Components Test. Analyses further 

indicated that the statistical numeracy sub-test 

portion alone explained 33 percent of the total 

decision-making skill variance (as a single pre- 

dictor), such that 97 percent of the predictive 

power of full-scale numeracy was shared with the 

statistical numeracy subscale. This finding 

highlights the widely observed, robust link 

between general decision-making skill and statis- 

tical numeracy (e.g. a five-minute test specifically 

focusing on operations and probabilistic induc- 

tive reasoning skills). By nearly any behavioral 

science standard this association is very strong. It 

is similar to the relationship between tempera- 

ture and distance from the equator in the United 

States (e.g. Michigan is almost always much 

colder than Oklahoma or Florida), or more than 

25 times greater than the meta-analytically 

derived average effect of ibuprofen for acute pain 

relief. In comparison, the predictive power of 

conventional numeracy alone (i.e. geometry and 

algebra) explained less than half as much 

variance as statistical numeracy (i.e. 16 percent). 

To illustrate, Figure 26.2 presents data from a 

sample of young adults displaying the total 
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Table 26.2 General decision-making skill assessment battery. 

Component Description Example item 

A-DMC Includes a battery of seven 

categories of paradigmatic 

decision tasks and common  

biases. 

  See Table 26.1

Prospect Evaluation 
Risky prospects and lotteries      Includes paradigmatic, modest-  

stakes risky prospect evaluations 
presented in many formats, 
across a wide range of risk and 
EV ratio ranges. 

Intertemporal choices Presented a series of paradigmatic 
time-reward preference tasks 
based on previous research. 
Items present differing time 
intervals and reward amounts. 

 
 
Which of the two options do 

you prefer: 
(1) Lose $50. 

(2) 50% chance to lose $400. 

 
Which of the two options do 

you prefer: 
(1) $3400 this month. 

(2) $3800 next month. 

Reference Class and Class- 

Inclusion Neglect, with con- 

fidence calibration 

 

 

 

 

 

 

 

 
Ecological Risk Literacy and 

Informed Decision-Making, 

with confidence calibration 

Measures the propensity to 

neglect reference classes, base 

rates, and various ratio-relevant 

decision factors (e.g. 

denominators). 

 

 

 

 

 

 
Assesses informed decision-making 

in risky health, financial, and nat- 

ural hazard decisions sampled 

from, and ecologically represen- 

tative of, common naturalistic 

decision tasks. 

A new drug is introduced to reduce 

the risk of death from a heart 

attack for people with high cho- 

lesterol. A study of 900 people 

with high cholesterol showed that 

80 of the 800 people who have 

not taken the drug died after a 

heart attack, compared with 16 of 

the 100 people who did take the 

drug. How beneficial was the 

drug? (plus confidence) 

Imagine you take out a $50,000 fed- 

eral student loan to help pay for 

college. You are offered four pos- 

sible repayment plans. Given 

information about each of these 

plans, participants must 

determine which plan is best, 

based on dif- ferent criteria. (plus 

confidence) 

 
 

 

 
variance explained in overall superior decision- 

making performance (i.e. general decision- 

making skill) by each of the following single 

predictors alone: Full-Scale Numeracy (i.e. sta- 

tistical numeracy + conventional numeracy), 

Statistical Numeracy (i.e. probability + opera- 

tions), all other assessed General Cognitive 

Abilities (e.g. fluid intelligence, cognitive 

reflection, health literacy, other numeracy 

tests), Conventional Numeracy (i.e. algebra + 

geome- try), and Raven s Advanced Progressive 

Matrices (i.e. fluid intelligence) (Cokely et al., 

forthcom- ing; Ghazal, 2014). 

Additional analyses confirmed that numeracy 

was strongly related to fluid intelligence in our 

study (i.e. about 25 percent shared variance), with 
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Figure 26.2 The total variance explained in overall general decision-making skill by 

each variable modeled as a single, sole predictor. 

 
 

Figure 26.3 The proportion of variance in a factor-analytically derived 

best-fitting model of overall general decision-making skill. 

 
fluid intelligence exhibiting a significantly stron- 

ger association with conventional numeracy than 

statistical numeracy. Fluid intelligence alone (as 

assessed by the Raven s advanced pro- gressive 

matrices) explained less than half the variance of 

the brief statistical numeracy test, as 

is depicted in Figures 26.3 26.5. Structural 

models further indicated that the link between 

fluid intelligence and general decision-making 

skill was largely mediated by statistical numer- 

acy. Consistent with previous studies, fluid intel- 

ligence predicted general decision- making skill 
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in large part because more intelligent people had 

higher levels of statistical numeracy proficiency. 

That said, high levels of statistical numeracy and 

decision-making skill also occurred in the 

 
 

Figure 26.4 Spatial depiction of the estimated and 

approximate scaled relations between (a) 

statistical numeracy, (b) conventional numeracy, 

(c) risk literacy and general decision-making skill, 

and (d) fluid intelligence. 

absence of high fluid intelligence scores. Similar 

patterns of results were found in fine-grained 

analyses of specific decision  competencies  (e.g. 

A-DMC, Ecological Risk Literacy, Class- 

Inclusion Illusions, and Risky Prospect 

Evaluation). In all cases the strongest single pre- 

dictor of decision-making skill was full-scale 

numeracy, followed closely by statistical numer- 

acy, which almost entirely mediated any connec- 

tion between fluid intelligence and decision- 

making skill. In turn, subsequent structural 

modeling revealed that one s ability to evaluate 

and understand risk (i.e. risk literacy) tended to 

mediate the observed relations between statistical 

numeracy and general decision-making perfor- 

mance: About 70 percent of the relationship 

between numeracy and decision-making was 

explained by decision-making performance on 

naturalistic risky decision-making tasks (e.g. 

assessing real financial products, evaluating treat- 

ment advice, interpreting risks and trade-offs 

based on actual scientific evidence or govern- 

ment-approved brochures, etc.). These results 

converge, indicating that acquired statistical 

 
 

 
 

Figure 26.5 The predicted hypothetical restructuring of Carroll s (1993) 

cognitive ability model based on emerging data, highlighting the robust 

influence of general decision-making skill. 
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numeracy skills robustly and uniquely predict 

one s general decision-making skill, often oper- 

ating independent of fluid intelligence and other 

basic cognitive abilities among diverse and gen- 

erally healthy young adults. To further illustrate 

these relations, based on a sample of young 

adults, Figure 26.3 depicts the proportion of var- 

iance in a factor-analytically derived best-fitting 

model of overall general decision-making skill as 

a function of (a) Statistical Numeracy, (b) 

Paradigmatic Decision-Making Tasks (e.g. risky 

prospect evaluation), and (c) Fluid Intelligence 

(i.e. Raven s Advanced Progressive Matrices). 

 

How Numeracy Out-Predicts Fluid 
Intelligence 

The tight connections linking risk, uncertainty, 

and decision-making help explain why statistical 

numeracy is such a strong predictor of decision- 

making skill: decision-making is fundamentally 

about reckoning with risk and uncertainty (Figure 

26.4). Accordingly, a normatively super- ior 

decision is essentially a good bet. If you know the 

rules of probability theory and understand your 

own information processing biases, compe- 

tencies, knowledge, and values, no matter how 

carefully you check your reasoning, your choice 

will always entail some risk  and  uncertainty. In 

contrast, fluid intelligence tests are primarily 

about careful and thorough deductive reasoning 

under conditions of certainty. Thus, if you care- 

fully concentrate for long enough to triple check 

the coherence of your analysis, you can determine 

the right answers on intelligence tests with per- 

fect certainty every time. 

The fact that abstract deductive reasoning (i.e. 

rule-induction) is a central feature of gold stan- 

dard fluid intelligence tests helps explain why 

these tests are argued to be best characterized as 

assessments of working memory and attentional 

control (e.g. general fluid memory; Kyllonen & 

Christal, 1990; McCabe, Roediger, McDaniel, 

Balota, & Hambrick, 2010). One s ability to 

 

coherently sustain and direct high-concentration 

attention in the service of error-free analysis is 

especially relevant for time-limited problem- 

solving tasks involving complicated abstract 

rules and unfamiliar artificial objects. For exam- 

ple, a worry-free person who wakes up fresh in 

the morning might answer nearly every matrix 

question correctly, yet that same person may cut 

corners and make strange processing and logical 

errors if sleep deprived, hungry, upset, or other- 

wise preoccupied (e.g. lapses of attention). 

Indeed, many kinds of acquired, environmental, 

motivational, and emotional mechanisms influ- 

ence these attentional control capacities, as 

reflected in the very large historical increases in 

fluid intelligence scores observed during the 

twentieth century (Fox & Mitchum, 2013, 2014; 

but for training and motivation studies see 

Cokely, Kelley, & Gilchrist, 2006; Duckworth & 

Seligman, 2005; Jaeggi, Buschkuehl, Jonides, & 

Shah, 2011). 

Because fluid intelligence tests are fundamen- 

tally tests of abstract (unfamiliar) reasoning under 

certainty, the task demands imposed by fluid 

intelligence tests are not broadly representative 

of typical human decision-making (i.e. not 

ecologically representative or valid). In contrast, 

actual human decision-making is largely a 

knowledge-centric and comprehension-oriented 

activity. Effective decision-making generally 

involves consideration of options in the context 

of extensive knowledge, deeply held values, 

actual responsibilities, and practical constraints 

(e.g. with reference to and relevance for family, 

finances, health, career, happiness, trust, regret, 

safety, etc.). The precise evaluation of costs, ben- 

efits, and trade-offs necessarily entails concrete 

consideration of familiar, tangible, and affec- 

tively charged outcomes and implications (e.g. 

losing money, avoiding illness, giving risky 

advice). In some sense, trying to measure deci- 

sion-making skill with an unfamiliar abstract 

rule-induction task may be like trying to measure 

reading comprehension with an unfamiliar 
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foreign vocabulary learning test. Even if the 

strange vocabulary learning test had some pre- 

dictive power, it would be a poor assessment 

when compared to more comprehensive analyses 

of the full range of underlying cognitive pro- 

cesses (e.g. reading complex and relevant pas- 

sages in one s native language). Ultimately, 

statistical numeracy tests are robust predictors 

turn to recent research on risk communication, 

training, and decision support. 

To further explore the roles of skills and abil- 

ities in representative decision-making tasks, we 

turn to recent research on risk communication, 

training, and decision support. 

 
Simple, Powerful Decision Support 

because their imposed task demands are more    

representative of the diverse sub-skills and pro- 

cesses typically involved in effective naturalistic 

decision-making (e.g. practical and personally 

meaningful inductive reasoning and self- 

regulation under risk and uncertainty). For these 

and many other reasons, in the light of emerging 

data it is likely that more comprehensive psycho- 

metric studies will necessitate major restructuring 

of unified models of general human intelligence 

and the nature of its constituent abilities, as 

depicted  in  Figure  26.5.  This  figure  depicts  a 

hypothetical restructuring of Carroll s (1993) 

cognitive ability model that is predicted to 

emerge as statistical numeracy and general deci- 

sion-making skill are more broadly and accu- 

rately represented in factor-analytic studies of 

general intelligence. As depicted, based on the 

extant evidence, the structure indicates that 

Carroll s current Fluid Intelligence factor appears 

likely to dissolve by dividing its factor loadings 

between acquired General Decision-Making Skill 

(e.g. practical logical inductive reasoning skills) 

and General Fluid Memory and Learning (e.g. 

executive functioning, attentional control), con- 

sistent with recent studies on the relations 

between decision-making skill, fluid intelligence, 

and numeracy. The model would also better 

accord with research indicating that the tests 

commonly used to estimate fluid intelligence 

(e.g. matrix reasoning tasks) tend to largely be 

measures of variations in coordinated general 

attentional control and short-term (working) 

memory   storage   (McCabe   et   al.,    2010). To 

further explore the roles of skills and abilities in 

representative decision-making tasks, we now 

Numerate decision-makers are generally more 

resilient against information distortion and choice 

manipulation effects. Unfortunately, a large pro- 

portion of highly educated and intelligent work- 

ing professionals, such as physicians, have 

relatively low levels of statistical numeracy. This 

weakness translates into misinterpretations of 

probability expressions, causing misunder- 

standings and potentially dangerous risk commu- 

nication biases ( Garcia-Retamero & Cokely, 

2017; Garcia-Retamero et al., 2016b). For exam- 

ple, research indicates that nearly 50 percent of 

sampled physicians cannot correctly answer 

questions  like  if  person  A s  risk  of  getting  a 

disease is 1 percent in ten years, and person B s 

risk is double that of A s, what is B s risk?

Nevertheless, an impressive number of studies 

using simple graphical representations of numer- 

ical expressions of probability (bar and line 

charts, and icon arrays) have been found to 

improve decision-making quality in diverse pro- 

fessionals, patients, and publics (for reviews see 

Garcia-Retamero & Cokely, 2013, 2017). In one 

influential study involving a large nationally 

representative sample from the United States, 

results indicated that providing visual aids in 

addition to numerical information about the 

effectiveness of medical treatments increased the 

accuracy of less numerate people s judgments 

from less than 20 percent to nearly 80 percent. 

The benefits of visual aids essentially equated the 

more and less numerate individuals, as long as 

participants had some minimal graph interpreta- 

tion skills (i.e. graph literacy). In accord with 

Skilled Decision Theory, visual aids and other 
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Figure 26.6 A generalized structural process model of skilled decision-making, 

depicting typical patterns of situational, cognitive, and emotional 

interdependencies in accord with Skilled Decision Theory. 

 
transparent decision aids will tend to causally 

eliminate large differences in skilled decision- 

making by increasing deliberative evaluation and 

representative understanding of risks in long- 

term memory(Garcia-Retamero, Cokely, & 

Hoffrage, 2015). For example, in a recent study 

of some 300 practicing orthopedic surgeons, 

deliberation was found to partially mediate the 

relations between numeracy and clinically rele- 

vant judgment in a control condition (i.e. inter- 

pretation of  actual  anesthesia  risks  based  on  a 

recent peer-reviewed clinical trial). However, in 

a separate condition, differences in decision 

performance were completely eliminated when 

people were given a simple visual aid that pro- 

moted better understanding and more extensive 

deliberation among less skilled surgeons. 

Transparent   decision   aids   are  specifically 

designed to generate an accurate, robust, and 

representative understanding of risks and infor- 

mation  in  long-term  memory  (e.g.  promote   a 

thoroughly integrated and balanced understand- 

ing of relevant trade-offs, options, data, and 

consequences). Thus, visual aids promote risk 

literacy (i.e. the ability to evaluate and understand 

risk) in many of the same ways statistical numer- 

acy skills do, as can be seen in the structural 

process  model   depicted   in   Figure   26.6. The 

evidence showing that transparent decision 

aids causally improve decision-making by enhan- 

cing representative understanding and domain- 

specific risk literacy, such as health risk literacy 

and natural hazard risk literacy, comes from many 

different studies (for reviews see Garcia- 

Retamero & Cokely, 2013, 2014, 2017). All stu- 

dies were explicitly designed to be naturalistic 

and ecologically valid, accurately reproducing 

actual problems that people commonly encounter 

when they evaluate personally relevant informa- 

tion about health, money, relationships, and the 

like. For example, tasks have included investiga- 

tions on the accuracy of perceptions of health and 

disease risk, and risk reductions; inferences about 

the predictive power of medical tests and treat- 

ment effectiveness; assessments of subjective 

confidence in choices and risk perceptions; eva- 

luations and integrations of emotions, trust, and 

information accuracy; assessment and trajec- 

tories of health outcomes; preferences and 

memory for health information; and changes in 

attitudes, behavioral intentions, behaviors, and 

high-stakes informed decisions. 

Figure 26.6 depicts a structural process model 

of skilled decision-making derived from causal 

experimentation and formal quantitative structural 

equation modeling of high-stakes decision- 

making in health, public policy, and professional 

domains (e.g. medical screening, cancer treatment, 
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responses to the Ebola pandemic). Numeracy and 

decision aids (e.g. visual aids) support skilled 

decision-making both directly and indirectly 

through metacognitive and risk comprehension 

effects (e.g. deliberation, confidence monitoring, 

and calibration), refining representative under- 

standing and affective reactions (Garcia- 

Retamero et al., 2015). Numeracy also exerts a 

direct effect on affective responses such that both 

risk comprehension and numeracy independently 

influence the precision and calibration of affective 

intuitions (e.g. the relative subjective evaluation 

of positive and negative emotional  reactions). In 

accord with Skilled Decision Theory, the model 

indicates that high-quality skilled and informed 

decision-making primarily follows from the 

interplay of deliberative evaluation (e.g. 

cognitive and metacognitive elaboration and 

exploration) and representative understanding 

(e.g. precise and accurate integrated mental 

models of risks that inform metacognitive and 

affective deliberation), providing essential founda- 

tions for adaptive heuristic decision making (e.g. 

a representative understanding allows one to truly 

feel what s at stake, and why, thereby ordering 

and integrating exploration, cues, and priorities 

so as to calibrate fast and frugal decision-making 

heuristics that rely on non-exhaustive lexico- 

graphic search; Gigerenzer & Gaissmaier, 2011). 

 

Efficient General Skill Training 

As an extension of our work on the benefits of 

visual aids we have recently developed an online 

tutoring program that helps people learn how to 

interpret and use various graphs like bar charts, 

line charts, icon arrays, and decision trees i.e. a 

graph literacy training system (Cokely et al., 

forthcoming; Woller-Carter, 2016; Ybarra et al., 

2017). In theory, by developing an efficient and 

relatively brief (less than two hours) graph lit- 

eracy training program accessible to a wide range 

of individuals, we reasoned that we might be able 

to reach and empower more people. That is, we 

aimed to help improve graph literacy directly so 

that more people could benefit from simple visual 

aids that are highly effective for many types of 

risk communications, including those who score 

lower on standardized general ability and intelli- 

gence tests. 

Beyond the many practical benefits, a note- 

worthy theoretical result of our graph literacy 

training program was that training translated 

directly into large improvements in specific 

types of skilled decision-making. For example, 

in one experiment about 100 participants com- 

pleted either the graph literacy training program 

or a study skills training program. They were then 

tested on ostensibly unrelated decision-making 

tasks that did not include any type of visual aid. 

Participants in the graph literacy training condi- 

tion showed very large improvements in scores 

on tests of framing effects, sunk costs, and class 

inclusion illusions as compared to the control 

condition (e.g. about 1.5 standard deviation). 

Structural analyses confirmed that the improve- 

ments we observed in skilled decision-making 

were mediated by improvements in graph literacy 

independent of other basic cognitive abilities 

(i.e. after statistically controlling for numeracy, 

fluid intelligence, and other cognitive abilities) 

(Cokely et al., forthcoming; Woller-Carter, 2016). 

Theoretically, risk literacy is the central neces- 

sary and potentially sufficient condition for 

skilled and informed decision-making among 

healthy and motivated adults in naturalistic gen- 

eral decision settings. The fact that graph literacy 

training substantially improved aspects of general 

decision-making skill may seem surprising 

(Simons et al., 2016). However, we anticipated 

these effects based on the findings showing that 

visual aids tend to be particularly beneficial for 

these types of tasks (e.g. bar charts de-bias fram- 

ing effects, icon arrays de-bias ratio biases, deci- 

sion trees de-bias sunk cost effects). In some real 

sense when someone learns how to use graphs to 

represent data they are learning how to build 

useful mental models of risks and relations in 

jinhyocho
Highlight
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their long-term memory. Beyond the benefits of 

graph literacy training programs, there are many 

effective programs designed to directly develop 

essential probabilistic reasoning skills (Paas, 

1992; Rittle-Johnson & Koedinger, 2001). 

Although it can be difficult, there is no doubt that 

skilled decision-making can be dramatically 

improved with the right kinds of guidance, moti- 

vation, and deliberate practice (Arkes, 1991; 

Baron & Brown, 2012; Brase, 2014; Chang, 

Chen, Mellers, & Tetlock, 2016; Clegg et al., 

2015; Eskreis-Winkler et al., 2016; Fong, Krantz, 

& Nisbett, 1986; Garcia-Retamero, Cokely, 

Ghazal & Joeris, 2016a; Larrick, 2014; Larrick, 

Morgan, & Nisbett, 1990; Mellers et al. 2014, 

2015a, 2015b; Morewedge et al., 2015; Peters, 

2017; Peters et al., 2017; Soll, Milkman, & 

Payne, 2015; Torgerson, Porthouse, & Brooks, 

2005; Xin & Jitendra, 1999). 

Conclusions 

causal evidence. Contrary to long-held assump- 

tions, skilled decision-making does not gener- 

ally require high  levels  of  fluid  intelligence  or 

special abstract reasoning capacities. At an 

extreme, we find overwhelming evidence in 

decades of research on verifiable expert perfor- 

mers. If there are any effects of general cogni- 

tive abilities on expert decision-makers, they are 

increasingly trivialized and hard to detect com- 

pared to the profound decision quality benefits 

that accumulate with deliberate practice and the 

acquisition of specialized skills and knowledge 

(Ericsson et al., 2006). Even among non-experts, 

evidence indicates that decision-making is an 

acquired skill that generally operates independent 

of fluid intelligence. One s acquired level of sta- 

tistical numeracy in particular, as measured by the 

Berlin Numeracy Tests and others, tends to be the 

single strongest predictor of general decision- 

making skill across laboratory, naturalistic, and 

real-world contexts. This finding is consistent 

   with the extensive evidence showing that quanti- 

For more than a century people have used 

theoretical assumptions to argue that general 

intelligence constrains decision-making quality, 

causing substantial differences in human poten- 

tial and outcomes. In turn, some have argued that 

such associations should partially dictate the 

structure of our policies, rights, institutions, and 

welfare practices. Many scientists have endea- 

vored to map underlying issues in transparent 

ways. Many others have used these assumptions 

as justification for racist, sexist, and violent dis- 

crimination, disenfranchising millions of people 

and minority groups (Gould, 1996; Nisbett et al., 

2012). Setting aside moral and ethical outrage, at 

the heart of the scientific issue is a basic question 

about the extent to which abilities like fluid intel- 

ligence actually constrain decision-making 

quality. 

While theory of the past was built on broad 

assumptions about observed correlations, emer- 

ging experiments, training programs, and cogni- 

tive process tracing studies provide converging 

tative skills are among the most influential edu- 

cational variables associated with advancing 

economic prosperity in industrialized countries 

(Hanushek & Woessmann, 2010; Hunt & 

Wittmann, 2008). Results also reveal that simple 

interventions and brief training programs (e.g. 

visual aids and adaptive computerized tutors) can 

dramatically improve skilled decision- making of 

diverse individuals who vary widely in abilities, 

proficiencies, educations, back- grounds, values, 

and countries of residence (Garcia-Retamero & 

Cokely, 2011, 2013, 2017; see also Bruine de 

Bruin & Bostrom, 2013; Bruine de Bruin et al., 

2007; Fischhoff, 2013; Fischhoff, Brewer, & 

Downs, 2012; Peters, 2017; Petrova et al., 2014, 

2015; Trevena et al., 

2013). 

It is noteworthy that statistical numeracy and 

other practical inductive reasoning tasks have 

historically been neglected in psychometric intel- 

ligence research, given that these are the primary 

factors linking quantitative abilities and general 
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decision-making skill. This robust association in 

part reflects shared elements on surface levels 

(e.g. numbers are common features of many deci- 

sions) and at foundations (e.g. understanding risk 

and uncertainty). Consistent with Skilled 

Decision Theory, statistical numeracy predicts 

skilled decision-making because both require 

practical probabilistic reasoning and skilled 

metacognition (e.g. accurately evaluating and 

integrating thoughts, feelings, risks, and values). 

When these skills are combined with personally 

meaningful deliberation, they tend to promote a 

thorough and robustly representative understand- 

ing (e.g. adaptive mental models and integrated 

situation awareness), circumventing basic atten- 

tional capacity limitations with well-organized 

knowledge structures in long-term memory (e.g. 

vast personal knowledge and experience). 

Ultimately,  a  representative  understanding  of a 

decision problem helps people intuitively and 

precisely feel the relative weights of the essential 

issues, thereby enabling the adaptive use of heur- 

istic evaluation and decision strategies. 

 

Understanding Risks 

Despite recent advances in  our  understanding of 

skilled decision-making, several obstacles 

present great challenges. Strongly polarized 

beliefs and values exist in most communities and 

countries. Consistent with the current review, 

improvements in communications and clarifica- 

tions of material facts are likely to resolve many 

of these issues. Nevertheless, research also indi- 

cates that some of these biases may never go 

away (Feltz & Cokely, 2009, 2012, 2013, 2016). 

Some fundamental morally relevant biases are so 

robust they persist even among skilled reasoners, 

including verifiable experts who have devoted 

their lives to understanding the specific and rele- 

vant philosophical issues (Cokely & Feltz, 2009a, 

2009b, 2014; Kahan, Jenkins-Smith, & Braman, 

2011; Schulz, Cokely, & Feltz, 2011). In part, 

such biases persist because we don t have reliable 

methods that can provide accurate feedback about 

the objective truth of many moral questions (if it 

even exists). We can precisely measure things 

like the weight of gold, but the same cannot be 

said for assessments of issues like rightness, jus- 

tice, or equality. Even though skilled decision- 

makers can approximate normatively superior 

decision-making standards, these standards can- 

not tell us which decisions we should make unless 

we know what we should value. Moreover, deci- 

sion sciences and technologies are rapidly enhan- 

cing the ability of some to control and manipulate 

our choices, often without our awareness or 

consent. While some valuable efforts are being 

deployed to help more of us make beneficial 

decisions without limiting our choices (Thaler & 

Sunstein, 2008), many others are designed to 

promote special interests and values via non- 

rational persuasion and choice architecture 

manipulation. 

As decision science advances we will increas- 

ingly be faced with a fundamental ethical ques- 

tion: Who should decide how we live our lives? A 

straightforward answer is that every person who 

is competent should have the opportunity  to 

make their own decisions, given basic condi- 

tions (e.g. absent unwanted infringement on the 

autonomy of others). This perspective accords 

with widely accepted standards for ethical and 

informed decision-making that emphasize auton- 

omy and the importance of opportunities for 

deliberation in the light of one s own values 

(Drane, 1984). If we aspire to satisfy these ethical 

standards and promote related democratic ideals, 

decision-makers will need a balanced but not 

necessarily extensive understanding of the risks 

and implications of various courses of action 

i.e. a representative understanding (Feltz, 2015; 

Feltz & Cokely, 2016; Fischhoff et al., 2011; 

Garcia-Retamero & Cokely, 2017). Developing 

efficient scientific means of identifying and 

promoting representative understanding across 

evolving domains and conflicts is a formidable 

and worthy task. Methods developed for research 
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on expert performance can help light the way for 

those decision scientists who dare to take on 

informed decision-making challenges in com- 

plex, controversial, and high-stakes domains 

(e.g. climate change, energy, education, health, 

cybersecurity). To the extent we improve repre- 

sentative understanding, the research reviewed 

here indicates that diverse people will be better 

prepared to make and discuss life-altering deci- 

sions in adaptive and ethical ways. Over time, 

even small improvements in skilled decision- 

making add up to substantial personal and socie- 

tal benefits. It is a great gift and responsibility to 

know that nearly everyone has the ability to make 

well-informed and skilled decisions so long as 

they understand risks. 
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