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‭The game of peg solitaire has a rich and complex history. Many are familiar with the‬

‭game and its seemingly simple rules: “jump” a peg and it disappears, and repeat until there is one‬

‭peg remaining. However, a deeper analysis of peg solitaire reveals rich mathematical ideas‬

‭behind both the strategy and solvability of the game. Boards can come in many different shapes;‬

‭the most prominent of which have been listed below:‬

‭On the first 5 board layouts, moves are made by jumping pegs either horizontally or vertically.‬

‭The 6th board, however, allows jumps in 6 different directions: one for each side of the‬

‭hexagons. The solvability of these boards is well-established; however, less work has been done‬

‭on different variations of the game. Our research focused specifically on peg solitaire in 3 colors‬

‭on a triangle graph.‬

‭Analysis on traditional peg solitaire on triangle boards (board 6) can be found in the work‬

‭of George Bell, who published a paper in 2008 titled “Solving Triangular Peg Solitaire.” The‬

‭standard rules for triangular peg solitaire involve a board containing all the holes filled with‬

‭pegs, except for one empty starting hole. The game is then played by moves called “jumps,”‬
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‭where a selected peg is jumped over an adjacent peg, and the peg that was jumped over is‬

‭removed. When there are no more possible moves, the game is over. Traditionally, peg solitaire‬

‭is understood to be won if the board state resolves to contain only one remaining peg at the‬

‭conclusion of the game. Using this rule set, Bell discussed the theory of the game, and addressed‬

‭the solvability (read: able to be reduced to a single peg) of various starting positions and board‬

‭sizes. As we discuss the various arguments, it is important to understand the notation used. In the‬

‭symbol T‬‭n‬‭, the T represents a triangular board, while‬‭n‬‭represents the number of rows on the‬

‭board. Coordinates on triangular boards are typically labeled in coordinate pairs of (‬‭x, y‬‭), where‬

‭x is the 0-indexed vertical distance from the left side, and y is the 0-indexed distance from the‬

‭top of the triangle (A/N: this is unintuitive, because the natural way to read a board is by starting‬

‭at the top and counting down to the desired row. However, if done in this manner, the coordinate‬

‭pairs will be read in the “wrong” order. Keep this in mind when reading coordinate pairs). A‬

‭jump is typically represented by two coordinate pairs, one for the starting position of the moving‬

‭peg and one for the ending position.‬

‭On a triangular board T‬‭n‬ ‭where‬‭n‬‭≥ 4, one way to prove‬‭the solvability is a parity‬

‭argument. Consider a board labeled as follows:‬
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‭Bell, 2008.‬

‭In this diagram, the coordinates (x, y) are labeled (x + y mod 3). If a jump is executed on this‬

‭board, it will necessarily involve 3 spaces with numerically different labels. Because the total‬

‭number of pegs in two of the spaces will decrease in value (by the peg being moved and the peg‬

‭being removed) and the total number of pegs in the other will increase in value, the overall parity‬

‭of the sum of pegs in two selected spaces cannot change. If c‬‭0‬ ‭represents all pegs in spaces‬

‭labeled 0, c‬‭1‬ ‭represents all pegs in spaces labeled‬‭1, and c‬‭2‬ ‭represents all pegs in spaces labeled 2,‬

‭then (c‬‭2‬ ‭+ c‬‭1‬‭) will not change parity throughout the‬‭game (nor will any other combination of‬

‭spaces). Because of this property, the vector created by {(c‬‭0‬ ‭+ c‬‭1‬‭), (c‬‭0‬ ‭+ c‬‭2‬‭), (c‬‭2‬ ‭+ c‬‭1‬‭)} has 4‬

‭different possibilities, which partitions all board states into 4 equivalence classes: (0, 0, 0),  (0, 1,‬

‭1), (1, 0, 1), and (1, 1, 0). Other combinations cannot occur, as it is impossible to have all three‬

‭sums odd or exactly one sum odd. From this argument, Bell proves that for any T‬‭n‬ ‭board with‬‭n‬‭≥‬
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‭4, the board is not solvable to one peg iff‬‭n‬‭= 1 (mod 3) and x‬‭s‬ ‭+ y‬‭s‬ ‭= 0 (mod 3), where x‬‭s‬ ‭and y‬‭s‬

‭represent the starting coordinates of the hole.‬

‭The T‬‭5‬ ‭board is what most people commonly think of‬‭when they hear of peg solitaire, due‬

‭to its nationwide popularity at Cracker Barrel. Bell advances an interesting argument for the‬

‭solvability of this board in particular, utilizing a pagoda function to track solvability. A‬‭pagoda‬

‭function‬‭is defined in game theory as a number or‬‭value on a board that cannot increase as the‬

‭game is played, providing an easy one-way method of tracking solvability from a known state. A‬

‭synonymous term for a pagoda function is a‬‭resource‬‭count‬‭. Bell discusses an interesting pagoda‬

‭function on the T‬‭5‬ ‭board named a board’s “SAX” count,‬‭first discovered by Hentzel and Hentzel‬

‭in 1986.‬

‭Bell, 2008.‬

‭The figure on the right contains a labeling of the board useful for understanding SAX count. Bell‬

‭defines the following criteria:‬

‭●‬ ‭S is the number of colored edge regions with two or more pegs‬

‭●‬ ‭A is the number of pegs occupying holes labeled “+1”‬

‭●‬ ‭X is the number of pegs occupying holes labeled “-1”‬
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‭With these restrictions, the overall SAX count of a board‬‭cannot‬‭increase during play. Thus, a‬

‭board that starts with SAX count -2 is unsolvable. Furthermore, any board with starting SAX‬

‭count -1 is also unsolvable. I encourage the reader to consider the board themselves to determine‬

‭why these two statements are true (Dr. Grimley - is this allowed? I stole this technique from our‬

‭Discrete Math textbook).‬

‭One final solution strategy for T‬‭n‬ ‭boards is to consider‬‭purges‬‭, which are patterns of pegs‬

‭that are always solvable. Bell highlights 3 patterns that are always solvable, and discusses how‬

‭they can be grouped together to prove solvability. In the interest of brevity, these specific patterns‬

‭will not be discussed here, for reasons soon to be addressed.‬
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‭3-Color Boards‬

‭Our research interest was a variation on the traditional rules where the concept of‬

‭“colors” is introduced to the graph. The normal game of peg solitaire can be conceptualized as‬

‭having two colors: one for an empty hole and one for a peg. We added a third color to the game,‬

‭representing a different color of peg. Under this new ruleset, if a peg is jumped over a peg of the‬

‭same color, the peg that was jumped over switches to be the other color. If a peg is jumped over a‬

‭peg of a differing color, the jumped peg is removed as normal:‬

‭Davis et al., 2020.‬

‭Adding this ruleset drastically changes what we know about the solvability of different types of‬

‭graphs. Davis et al. (2020) discusses some considerations when conceptualizing the board in this‬
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‭manner. Notably, they highlight the fact that moves can be represented in modular arithmetic: if‬

‭the colors are labeled ‘0’ for an empty hole, and ‘1’ and ‘2’ for the two types of pegs, the result‬

‭of‬‭v‬‭2‬ ‭for any jump <‬‭v‬‭1‬‭, v‬‭2‬‭, v‬‭3‬‭> is the value of‬‭v‬‭1‬ ‭+‬‭v‬‭2‬ ‭modulo 3. Similarly to the original game, the‬

‭goal of this version is to have one peg remaining on the board once all moves have been‬

‭conducted.‬

‭An important distinction to consider is the difference between a board being‬‭solvable‬‭and‬

‭being‬‭freely solvable‬‭. A graph/board is considered‬‭solvable if there exists a solution path for at‬

‭least one of its starting states. To be freely solvable, a board must contain a solution path for‬

‭every starting state. Davis et al. (2020) show that path graphs (a board of just a straight line of‬

‭pegs) are solvable, but not freely solvable. Consider the following board:‬

‭0 1 1 1 1 … 1 1‬

‭A move can be made where v‬‭3‬ ‭is hopped over v‬‭2‬ ‭to get‬‭the following result:‬

‭1 2 0 1 1 … 1 1‬

‭From there, v‬‭1‬ ‭can be hopped back over v‬‭2‬ ‭to obtain:‬

‭0 0 1 1 1 … 1 1‬

‭We now have the original board with length n - 1. This process can be repeated until the board is‬

‭solved.‬

‭Using similar arguments, Davis et al. proves that cycle graphs are solvable for‬‭n‬‭≥ 2,‬

‭bipartite graphs‬‭K‬‭m, n‬ ‭are freely solvable for all‬‭m, n‬‭> 1, star graphs‬‭K‬‭1, n‬ ‭are (‬‭n‬‭-1) solvable for‬‭n‬

‭> 2. They also investigate Cartesian products of graphs and tree solvability. As our research‬

‭focus was on the solvability of a triangular board in 3 colors, many of these proofs were not‬

‭robustly investigated.‬
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‭We investigated various strategies of proving the solvability of a triangle board of 3‬

‭colors. One initial problem that quickly became apparent was the issue that almost none of the‬

‭strategies outlined by Bell (2008) of solving a triangle board were generalizable to 3 colors. For‬

‭example, consider the aforementioned parity argument. Central to the proof is the fact that the‬

‭total number of pegs in two of the three classes of holes decrease each jump, while the total‬

‭number of pegs in the remaining class always increases. Unlike a traditional board, games in 3‬

‭colors do not necessarily follow this pattern. For jumps with two pegs of the same color, only‬

‭one class of hole decreases in value, while one increases and the final class stays constant (due to‬

‭the fact that the middle peg is not removed and only switches color). We investigated whether‬

‭there were any other ways of conceptualizing parity, but this approach did not yield any results.‬

‭Similarly, we struggled to find an adequate resource count for triangle boards. The SAX‬

‭count of a 3-color board does not fit the criteria, as it is possible for the SAX count to both‬

‭increase and decrease during play. For example, consider the following boards:‬

‭1‬
‭1 2‬
‭1 0 2‬
‭2 2 1 2‬
‭2 2 1 1 2‬
‭SAX: -1‬

‭1‬
‭1 2‬
‭1 2 2‬
‭2 1 1 2‬
‭2 0 1 1 2‬
‭SAX: 0‬

‭The jump [(1, 4), (1, 3), (1, 2)] was performed, and the SAX count increased from -1 to 0. This‬

‭discrepancy in how SAX count functions between 2-color boards and 3-color boards is again due‬
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‭to the fact that it is possible for pegs to not be removed for certain jumps. Once more, we‬

‭investigated certain possibilities for alternative resource counts, but our efforts were fruitless.‬

‭We began looking into specific purge patterns for 3-color boards. Unsurprisingly, the‬

‭patterns that Bell (2008) described did not generalize to our boards, and the specific purge‬

‭patterns that we found to hold true for 3-color boards were not useful in the same manner. The‬

‭conceptual basis for the utility of purges in traditional peg solitaire is that the ending state of the‬

‭pegs is predictable: given a specific pattern of pegs, they can be solved to where the remaining‬

‭peg will end in a desired location. One problem we encountered is that the ending location of the‬

‭remaining peg was variable depending on the exact pattern of peg colors on the initial purge‬

‭block. This made it difficult to fully string together purges to inductively prove the solvability of‬

‭boards. However, this approach definitely holds potential, and we encourage future research to‬

‭analyze purge removals in detail.‬

‭One possibility for why we found multiple solution strategies to be inapplicable to‬

‭3-color boards became apparent: were some boards of size T‬‭n‬ ‭freely solvable? During our‬

‭investigations, we noticed that we had not yet encountered an initial state for any T‬‭5‬ ‭board that‬

‭was unsolvable. We then pivoted our focus to determine if all T‬‭5‬‭boards were freely solvable.‬

‭To answer this question, we wrote a program in Java designed to generate all starting‬

‭positions of T‬‭5‬ ‭boards up to symmetry, and find a‬‭solution for them if possible. For T‬‭5‬ ‭boards,‬

‭there are 4 symmetrically different starting positions for the initial hole. A proof for this will be‬

‭included at the end of the paper. We utilized a simple recursive algorithm that checked all‬

‭possible moves beginning at the top hole and worked downwards throughout the graph,‬
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‭outputting the first solution it found. For T‬‭5‬ ‭boards, all possible starting states contained at least‬

‭one solution, demonstrating that our initial hypothesis was correct.‬

‭We then attempted to prove the solvability of other sizes of boards. Generating all‬

‭solutions for T‬‭4‬ ‭boards displayed that not all starting‬‭states were solvable. Notably, all boards‬

‭that started with a hole in the middle position were unsolvable:‬

‭2‬
‭2 2‬
‭2 0 2‬
‭2 2 2 2‬

‭Regardless of the value of the pegs, a board of this configuration has no possible jumps, and thus‬

‭is unsolvable. Select other T‬‭4‬ ‭boards were unsolvable‬‭as well, and the common theme for these‬

‭boards was the middle hole necessarily appearing in their solution paths, and being unable to‬

‭remove.‬

‭We then investigated T‬‭6‬ ‭boards to see what we could‬‭find. Unfortunately, due to the‬

‭massive jump in possible configurations/solutions posed by the move from T‬‭5‬ ‭boards to T‬‭6‬

‭boards, we were unable to feasibly generate all possible solutions. Our algorithm was allowed to‬

‭run for approximately 6 hours, and output solutions for around ¼ of the possible T‬‭6‬ ‭boards. All‬

‭boards generated were solvable, but more research is needed into proving if all starting states are.‬

‭Although there remains ground to cover before proving the solvability of certain‬

‭triangular boards in 3 colors, we accomplished much during our research. We successfully‬

‭investigated the applicability of previously known solutions strategies for traditional peg solitaire‬

‭and discovered that they are generally inconclusive for boards in 3 colors. We also discovered‬

‭which initial states of T‬‭4‬ ‭and T‬‭5‬ ‭boards were solvable.‬‭Now, the task is to determine exactly why.‬

‭Time to get creative.‬
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‭Proof of the number of starting positions up to symmetry on boards of size T‬‭n‬‭:‬

‭Base case:‬

‭The board T‬‭1‬ ‭has one starting position:‬

‭0‬

‭Although not much of a board, this case is important to consider.‬

‭The board T‬‭2‬ ‭also has one starting position, up to‬‭symmetry. As can be seen below,‬

‭whichever position is selected to be ‘0’ will always be able to be rotated so it matches this‬

‭configuration:‬

‭0‬
‭1 1‬

‭The board T‬‭3‬ ‭has two starting positions, up to symmetry.‬‭As can be seen below, the‬

‭starting hole has two options. It can either be on a corner:‬

‭0‬
‭1 1‬
‭1 1 1‬

‭Or on a position in the middle:‬
‭1‬
‭1 1‬
‭1 0 1‬

‭Inductive step:‬

‭Consider a board T‬‭n‬ ‭where‬‭n‬‭≥ 4. Assume that for all‬‭boards T‬‭k‬ ‭where‬‭k‬‭<‬‭n‬‭,  the number‬

‭of starting positions up to symmetry is given by the formula: |T‬‭k‬ ‭|=‬‭ceil‬‭(‬ ‭) + |T‬‭k-3‬‭|, where |T‬‭k-3‬‭|‬
‭𝑘‬
‭2‬

‭represents the number of starting positions up to symmetry for the board T‬‭k-3‬‭. The board T‬‭n‬ ‭will‬

‭necessarily contain a board of size T‬‭n-3‬ ‭within itself,‬‭contained by a perimeter as shown below:‬
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‭1‬
‭1‬‭1‬
‭1‬‭1‬‭1‬
‭1‬‭1‬‭1‬‭1‬
‭1‬‭1‬‭1‬‭1‬‭1‬
‭1‬‭1 1 1 1‬‭1‬
‭1 1 1 1 1 1 1‬

‭The perimeters of boards of size 1 (red), size 4(blue) and size 7 (pink).‬

‭Thus, the board of size T‬‭n‬ ‭contains all the necessary‬‭different starting positions for‬

‭symmetry of the board of size T‬‭n-3‬ ‭alongside the additional‬‭starting positions created by the‬

‭addition of a layer around it. Because the different sides of the triangle (and the individual halves‬

‭of a specific side, rounded up) are symmetrically identical, the number of added starting‬

‭positions up to symmetry is given by‬‭ceil‬‭(‬ ‭). Because starting positions are additive, the number‬‭𝑛‬
‭2‬

‭of starting positions of T‬‭n‬ ‭is given by  |T‬‭n‬ ‭|=‬‭ceil‬‭(‬ ‭) + |T‬‭n-3‬‭|.‬
‭𝑛‬
‭2‬

‭Because |T‬‭n-3‬‭| = 0 for any boards of size‬‭n <‬‭1, we‬‭know that T‬‭1‬‭, T‬‭2‬‭, and T‬‭3‬ ‭all follow this‬

‭formula for symmetry. Thus, the proof is complete, and the number of starting positions up to‬

‭symmetry for a board of size T‬‭n‬ ‭is given by  |T‬‭n‬ ‭|=‬‭ceil‬‭(‬ ‭) + |T‬‭n-3‬‭|.‬
‭𝑛‬
‭2‬
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