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Investigations into 3-Color Peg Solitaire
The game of peg solitaire has a rich and complex history. Many are familiar with the
game and its seemingly simple rules: “jump” a peg and it disappears, and repeat until there is one
peg remaining. However, a deeper analysis of peg solitaire reveals rich mathematical ideas
behind both the strategy and solvability of the game. Boards can come in many different shapes;

the most prominent of which have been listed below:

ooo ooo O
ooo oo0 oog ooo ooo
ooooo ooo ooo ooo COoooo )
s[ele] [e]® Oooo slejele oooooo oooog 00
OoooOooo ololele]e]eele oleleele]e]e sleje] [ejele| [e]e|e]e] |ele]e|s] @8]
ooooon Onoo slelele oooooo oooog slse]e)
ooooo 0ooQ oOog slele Cooog [e]s]s]ele)
ooQ ooQ oog ooQ elele
elele a

(1 O ®© O0

On the first 5 board layouts, moves are made by jumping pegs either horizontally or vertically.
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The 6th board, however, allows jumps in 6 different directions: one for each side of the
hexagons. The solvability of these boards is well-established; however, less work has been done
on different variations of the game. Our research focused specifically on peg solitaire in 3 colors
on a triangle graph.

Analysis on traditional peg solitaire on triangle boards (board 6) can be found in the work
of George Bell, who published a paper in 2008 titled “Solving Triangular Peg Solitaire.” The
standard rules for triangular peg solitaire involve a board containing all the holes filled with

pegs, except for one empty starting hole. The game is then played by moves called “jumps,”



where a selected peg is jumped over an adjacent peg, and the peg that was jumped over is
removed. When there are no more possible moves, the game is over. Traditionally, peg solitaire
is understood to be won if the board state resolves to contain only one remaining peg at the
conclusion of the game. Using this rule set, Bell discussed the theory of the game, and addressed
the solvability (read: able to be reduced to a single peg) of various starting positions and board
sizes. As we discuss the various arguments, it is important to understand the notation used. In the
symbol T,, the T represents a triangular board, while n represents the number of rows on the
board. Coordinates on triangular boards are typically labeled in coordinate pairs of (x, y), where
x is the 0-indexed vertical distance from the left side, and y is the 0-indexed distance from the
top of the triangle (A/N: this is unintuitive, because the natural way to read a board is by starting
at the top and counting down to the desired row. However, if done in this manner, the coordinate
pairs will be read in the “wrong” order. Keep this in mind when reading coordinate pairs). A
jump is typically represented by two coordinate pairs, one for the starting position of the moving
peg and one for the ending position.

On a triangular board T, where n > 4, one way to prove the solvability is a parity

argument. Consider a board labeled as follows:



Bell, 2008.

In this diagram, the coordinates (X, y) are labeled (x + y mod 3). If a jump is executed on this
board, it will necessarily involve 3 spaces with numerically different labels. Because the total
number of pegs in two of the spaces will decrease in value (by the peg being moved and the peg
being removed) and the total number of pegs in the other will increase in value, the overall parity
of the sum of pegs in two selected spaces cannot change. If ¢, represents all pegs in spaces
labeled 0, c, represents all pegs in spaces labeled 1, and c, represents all pegs in spaces labeled 2,
then (c, + c,) will not change parity throughout the game (nor will any other combination of
spaces). Because of this property, the vector created by {(c, + c,), (¢, + ¢,), (¢, + ¢,)} has 4
different possibilities, which partitions all board states into 4 equivalence classes: (0, 0, 0), (0, 1,
1), (1,0, 1), and (1, 1, 0). Other combinations cannot occur, as it is impossible to have all three

sums odd or exactly one sum odd. From this argument, Bell proves that for any T, board with n >



4, the board is not solvable to one peg iff n = 1 (mod 3) and x, + y, = 0 (mod 3), where x, and y,
represent the starting coordinates of the hole.

The T board is what most people commonly think of when they hear of peg solitaire, due
to its nationwide popularity at Cracker Barrel. Bell advances an interesting argument for the
solvability of this board in particular, utilizing a pagoda function to track solvability. A pagoda
function is defined in game theory as a number or value on a board that cannot increase as the
game is played, providing an easy one-way method of tracking solvability from a known state. A
synonymous term for a pagoda function is a resource count. Bell discusses an interesting pagoda

function on the T board named a board’s “SAX” count, first discovered by Hentzel and Hentzel

in 1986.

Figure 4: T5 notation (a), position class (b), and the SAX count (c).

Bell, 2008.
The figure on the right contains a labeling of the board useful for understanding SAX count. Bell
defines the following criteria:

e S is the number of colored edge regions with two or more pegs

e A is the number of pegs occupying holes labeled “+1”

e X is the number of pegs occupying holes labeled “-1”



With these restrictions, the overall SAX count of a board cannot increase during play. Thus, a
board that starts with SAX count -2 is unsolvable. Furthermore, any board with starting SAX
count -1 is also unsolvable. I encourage the reader to consider the board themselves to determine
why these two statements are true (Dr. Grimley - is this allowed? I stole this technique from our
Discrete Math textbook).

One final solution strategy for T, boards is to consider purges, which are patterns of pegs
that are always solvable. Bell highlights 3 patterns that are always solvable, and discusses how
they can be grouped together to prove solvability. In the interest of brevity, these specific patterns

will not be discussed here, for reasons soon to be addressed.



3-Color Boards

Our research interest was a variation on the traditional rules where the concept of
“colors” is introduced to the graph. The normal game of peg solitaire can be conceptualized as
having two colors: one for an empty hole and one for a peg. We added a third color to the game,
representing a different color of peg. Under this new ruleset, if a peg is jumped over a peg of the
same color, the peg that was jumped over switches to be the other color. If a peg is jumped over a

peg of a differing color, the jumped peg is removed as normal:
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Figure 3. Example of moving a peg over a peg of a different color.

Davis et al., 2020.
Adding this ruleset drastically changes what we know about the solvability of different types of

graphs. Davis et al. (2020) discusses some considerations when conceptualizing the board in this



manner. Notably, they highlight the fact that moves can be represented in modular arithmetic: if
the colors are labeled ‘0’ for an empty hole, and ‘1’ and ‘2’ for the two types of pegs, the result
of v, for any jump <v,, v,, v;> is the value of v, + v, modulo 3. Similarly to the original game, the
goal of this version is to have one peg remaining on the board once all moves have been
conducted.

An important distinction to consider is the difference between a board being solvable and
being freely solvable. A graph/board is considered solvable if there exists a solution path for at
least one of its starting states. To be freely solvable, a board must contain a solution path for
every starting state. Davis et al. (2020) show that path graphs (a board of just a straight line of
pegs) are solvable, but not freely solvable. Consider the following board:

Orr11...11
A move can be made where v; is hopped over v, to get the following result:
12011...11
From there, v, can be hopped back over v, to obtain:
00111...11
We now have the original board with length n - 1. This process can be repeated until the board is
solved.

Using similar arguments, Davis et al. proves that cycle graphs are solvable for n > 2,
bipartite graphs K, , are freely solvable for all m, n > 1, star graphs K, , are (n-1) solvable for n
> 2. They also investigate Cartesian products of graphs and tree solvability. As our research
focus was on the solvability of a triangular board in 3 colors, many of these proofs were not

robustly investigated.



We investigated various strategies of proving the solvability of a triangle board of 3
colors. One initial problem that quickly became apparent was the issue that almost none of the
strategies outlined by Bell (2008) of solving a triangle board were generalizable to 3 colors. For
example, consider the aforementioned parity argument. Central to the proof is the fact that the
total number of pegs in two of the three classes of holes decrease each jump, while the total
number of pegs in the remaining class always increases. Unlike a traditional board, games in 3
colors do not necessarily follow this pattern. For jumps with two pegs of the same color, only
one class of hole decreases in value, while one increases and the final class stays constant (due to
the fact that the middle peg is not removed and only switches color). We investigated whether
there were any other ways of conceptualizing parity, but this approach did not yield any results.

Similarly, we struggled to find an adequate resource count for triangle boards. The SAX
count of a 3-color board does not fit the criteria, as it is possible for the SAX count to both

increase and decrease during play. For example, consider the following boards:

1
12
102
2212
22112

SAX: -1

1

12

122
2112
20112
SAX: 0

The jump [(1, 4), (1, 3), (1, 2)] was performed, and the SAX count increased from -1 to 0. This

discrepancy in how SAX count functions between 2-color boards and 3-color boards is again due



to the fact that it is possible for pegs to not be removed for certain jumps. Once more, we
investigated certain possibilities for alternative resource counts, but our efforts were fruitless.

We began looking into specific purge patterns for 3-color boards. Unsurprisingly, the
patterns that Bell (2008) described did not generalize to our boards, and the specific purge
patterns that we found to hold true for 3-color boards were not useful in the same manner. The
conceptual basis for the utility of purges in traditional peg solitaire is that the ending state of the
pegs is predictable: given a specific pattern of pegs, they can be solved to where the remaining
peg will end in a desired location. One problem we encountered is that the ending location of the
remaining peg was variable depending on the exact pattern of peg colors on the initial purge
block. This made it difficult to fully string together purges to inductively prove the solvability of
boards. However, this approach definitely holds potential, and we encourage future research to
analyze purge removals in detail.

One possibility for why we found multiple solution strategies to be inapplicable to
3-color boards became apparent: were some boards of size T, freely solvable? During our
investigations, we noticed that we had not yet encountered an initial state for any T board that
was unsolvable. We then pivoted our focus to determine if all Ts boards were freely solvable.

To answer this question, we wrote a program in Java designed to generate all starting
positions of Ts boards up to symmetry, and find a solution for them if possible. For T boards,
there are 4 symmetrically different starting positions for the initial hole. A proof for this will be
included at the end of the paper. We utilized a simple recursive algorithm that checked all

possible moves beginning at the top hole and worked downwards throughout the graph,
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outputting the first solution it found. For T boards, all possible starting states contained at least
one solution, demonstrating that our initial hypothesis was correct.

We then attempted to prove the solvability of other sizes of boards. Generating all
solutions for T, boards displayed that not all starting states were solvable. Notably, all boards

that started with a hole in the middle position were unsolvable:

2
2 2
2 02
2222
Regardless of the value of the pegs, a board of this configuration has no possible jumps, and thus
is unsolvable. Select other T, boards were unsolvable as well, and the common theme for these
boards was the middle hole necessarily appearing in their solution paths, and being unable to
remove.

We then investigated T, boards to see what we could find. Unfortunately, due to the
massive jump in possible configurations/solutions posed by the move from Ts boards to T
boards, we were unable to feasibly generate all possible solutions. Our algorithm was allowed to
run for approximately 6 hours, and output solutions for around % of the possible T, boards. All
boards generated were solvable, but more research is needed into proving if all starting states are.

Although there remains ground to cover before proving the solvability of certain
triangular boards in 3 colors, we accomplished much during our research. We successfully
investigated the applicability of previously known solutions strategies for traditional peg solitaire
and discovered that they are generally inconclusive for boards in 3 colors. We also discovered

which initial states of T, and Ts boards were solvable. Now, the task is to determine exactly why.

Time to get creative.
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Proof of the number of starting positions up to symmetry on boards of size T,:
Base case:
The board T, has one starting position:
0
Although not much of a board, this case is important to consider.
The board T, also has one starting position, up to symmetry. As can be seen below,
whichever position is selected to be ‘0’ will always be able to be rotated so it matches this

configuration:

11
The board T; has two starting positions, up to symmetry. As can be seen below, the

starting hole has two options. It can either be on a corner:

0
11
111
Or on a position in the middle:

11
101
Inductive step:

Consider a board T, where n > 4. Assume that for all boards T, where k£ < n, the number
of starting positions up to symmetry is given by the formula: |T, |= ceil(%) + | T3], where | T3]

represents the number of starting positions up to symmetry for the board T, ;. The board T, will

necessarily contain a board of size T, _; within itself, contained by a perimeter as shown below:
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1
11
111
1111
11111
1T1T1111
1111111
The perimeters of boards of size 1 (red), size 4(blue) and size 7 (pink).
Thus, the board of size T, contains all the necessary different starting positions for
symmetry of the board of size T, ; alongside the additional starting positions created by the

addition of a layer around it. Because the different sides of the triangle (and the individual halves

of a specific side, rounded up) are symmetrically identical, the number of added starting

positions up to symmetry is given by ceil(%). Because starting positions are additive, the number

of starting positions of T, is given by |T, |= ceil(%) + | T,

Because [T, ;| = 0 for any boards of size n < 1, we know that T,, T,, and Tj; all follow this

formula for symmetry. Thus, the proof is complete, and the number of starting positions up to

symmetry for a board of size T, is given by |T, |= ceil(%) + [ Tpsl-
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